医学
肺病
计算机断层摄影术
放射科
深度学习
人工智能
医学物理学
内科学
计算机科学
标识
DOI:10.1016/j.rmed.2024.107809
摘要
Chronic Obstructive Pulmonary Disease (COPD) represents a global public health issue that significantly impairs patients' quality of life and overall health. As one of the primary causes of chronic respiratory diseases and global mortality, effective diagnosis and classification of COPD are crucial for clinical management. Pulmonary function tests (PFTs) are standard for diagnosing COPD, yet their accuracy is influenced by patient compliance and other factors, and they struggle to detect early disease pathologies. Furthermore, the complexity of COPD pathological changes poses additional challenges for clinical diagnosis, increasing the difficulty for physicians in practice. Recently, deep learning (DL) technologies have demonstrated significant potential in medical image analysis, particularly for the diagnosis and classification of COPD. By analyzing key radiological features such as airway alterations, emphysema, and vascular characteristics in Computed Tomography (CT) scan images, DL enhances diagnostic accuracy and efficiency, providing more precise treatment plans for COPD patients. This article reviews the latest research advancements in DL methods based on principal radiological features of COPD for its classification and discusses the advantages, challenges, and future research directions of DL in this field, aiming to provide new perspectives for the personalized management and treatment of COPD.
科研通智能强力驱动
Strongly Powered by AbleSci AI