亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The potential and pitfalls of using a large language model such as ChatGPT, GPT-4, or LLaMA as a clinical assistant

计算机科学 自然语言处理 程序设计语言 人工智能
作者
Jingqing Zhang,Kai Sun,Akshay V. Jagadeesh,Parastoo Falakaflaki,Elena Kayayan,Guanyu Tao,Mahta Haghighat Ghahfarokhi,Deepa Gupta,Ashok Gupta,Vibhor Gupta,Yike Guo
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (9): 1884-1891 被引量:48
标识
DOI:10.1093/jamia/ocae184
摘要

Abstract Objectives This study aims to evaluate the utility of large language models (LLMs) in healthcare, focusing on their applications in enhancing patient care through improved diagnostic, decision-making processes, and as ancillary tools for healthcare professionals. Materials and Methods We evaluated ChatGPT, GPT-4, and LLaMA in identifying patients with specific diseases using gold-labeled Electronic Health Records (EHRs) from the MIMIC-III database, covering three prevalent diseases—Chronic Obstructive Pulmonary Disease (COPD), Chronic Kidney Disease (CKD)—along with the rare condition, Primary Biliary Cirrhosis (PBC), and the hard-to-diagnose condition Cancer Cachexia. Results In patient identification, GPT-4 had near similar or better performance compared to the corresponding disease-specific Machine Learning models (F1-score ≥ 85%) on COPD, CKD, and PBC. GPT-4 excelled in the PBC use case, achieving a 4.23% higher F1-score compared to disease-specific “Traditional Machine Learning” models. ChatGPT and LLaMA3 demonstrated lower performance than GPT-4 across all diseases and almost all metrics. Few-shot prompts also help ChatGPT, GPT-4, and LLaMA3 achieve higher precision and specificity but lower sensitivity and Negative Predictive Value. Discussion The study highlights the potential and limitations of LLMs in healthcare. Issues with errors, explanatory limitations and ethical concerns like data privacy and model transparency suggest that these models would be supplementary tools in clinical settings. Future studies should improve training datasets and model designs for LLMs to gain better utility in healthcare. Conclusion The study shows that LLMs have the potential to assist clinicians for tasks such as patient identification but false positives and false negatives must be mitigated before LLMs are adequate for real-world clinical assistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
konosuba完成签到,获得积分0
5秒前
15秒前
葵花籽发布了新的文献求助10
19秒前
59秒前
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
Broadway Zhang完成签到,获得积分10
1分钟前
1分钟前
彭于晏应助原子采纳,获得10
1分钟前
2分钟前
chenjy202303发布了新的文献求助30
2分钟前
原子发布了新的文献求助10
2分钟前
2分钟前
坦率灵槐应助原子采纳,获得10
2分钟前
完美世界应助Criminology34采纳,获得100
2分钟前
原子完成签到,获得积分10
2分钟前
溆玉碎兰笑完成签到 ,获得积分10
2分钟前
sunialnd完成签到,获得积分10
2分钟前
思源应助lawang采纳,获得10
2分钟前
隐形曼青应助lawang采纳,获得10
2分钟前
李健的小迷弟应助lawang采纳,获得10
2分钟前
思源应助lawang采纳,获得10
2分钟前
研友_VZG7GZ应助lawang采纳,获得10
2分钟前
Lucas应助lawang采纳,获得10
2分钟前
今后应助chenjy202303采纳,获得20
3分钟前
3分钟前
Criminology34发布了新的文献求助100
3分钟前
所所应助lawang采纳,获得10
3分钟前
华仔应助lawang采纳,获得10
3分钟前
情怀应助lawang采纳,获得10
3分钟前
无花果应助lawang采纳,获得10
3分钟前
酷波er应助lawang采纳,获得10
3分钟前
今后应助lawang采纳,获得10
3分钟前
丘比特应助lawang采纳,获得10
3分钟前
Jasper应助lawang采纳,获得10
3分钟前
善学以致用应助lawang采纳,获得10
3分钟前
英俊的铭应助lawang采纳,获得10
3分钟前
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957