Enhancing Machining Efficiency: Real-Time Monitoring of Tool Wear with Acoustic Emission and STFT Techniques

声发射 机械加工 短时傅里叶变换 刀具磨损 材料科学 汽车工程 计算机科学 声学 机械工程 工艺工程 工程类 傅里叶变换 冶金 复合材料 物理 傅里叶分析 量子力学
作者
Luís Henrique Andrade Maia,Alexandre Mendes Abrão,Wander L. Vasconcelos,Jánes Landre Júnior,Gustavo Henrique Nazareno Fernandes,Álisson Rocha Machado
出处
期刊:Lubricants [MDPI AG]
卷期号:12 (11): 380-380 被引量:10
标识
DOI:10.3390/lubricants12110380
摘要

Tool wear in machining is inevitable, and determining the precise moment to change the tool is challenging, as the tool transitions from the steady wear phase to the rapid wear phase, where wear accelerates significantly. If the tool is not replaced correctly, it can result in poor machining performance. On the other hand, changing the tool too early can lead to unnecessary downtime and increased tooling costs. This makes it critical to closely monitor tool wear and utilize predictive maintenance strategies, such as tool condition monitoring systems, to optimize tool life and maintain machining efficiency. Acoustic emission (AE) is a widely used technique for indirect monitoring. This study investigated the use of Short-Time Fourier Transform (STFT) for real-time monitoring of tool wear in machining AISI 4340 steel using carbide tools. The research aimed to identify specific wear mechanisms, such as abrasive and adhesive ones, through AE signals, providing deeper insights into the temporal evolution of these phenomena. Machining tests were conducted at various cutting speeds, feed rates, and depths of cut, utilizing uncoated and AlCrN-coated carbide tools. AE signals were acquired and analyzed using STFT to isolate wear-related signals from those associated with material deformation. The results showed that STFT effectively identified key frequencies related to wear, such as abrasive between 200 and 1000 kHz and crack propagation between 350 and 550 kHz, enabling a precise characterization of wear mechanisms. Comparative analysis of uncoated and coated tools revealed that AlCrN coatings reduced tool wear extending tool life, demonstrating superior performance in severe cutting conditions. The findings highlight the potential of STFT as a robust tool for monitoring tool wear in machining operations, offering valuable information to optimize tool maintenance and enhance machining efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GYJ完成签到 ,获得积分10
1秒前
1秒前
1秒前
A亮发布了新的文献求助10
2秒前
钱旭枫完成签到,获得积分10
2秒前
iebix完成签到,获得积分10
3秒前
qin发布了新的文献求助10
3秒前
3秒前
打打应助王同学采纳,获得10
4秒前
Rcls_Wy完成签到,获得积分10
4秒前
汉堡包应助读书的时候采纳,获得10
4秒前
5秒前
听风发布了新的文献求助10
5秒前
6秒前
新羽完成签到,获得积分10
6秒前
6秒前
6秒前
勤恳的一斩完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
hua完成签到,获得积分10
7秒前
surprise发布了新的文献求助10
7秒前
Light发布了新的文献求助10
8秒前
fg2477完成签到,获得积分10
9秒前
刘帅发布了新的文献求助10
9秒前
李爱国应助高贵振家采纳,获得10
9秒前
路绪震发布了新的文献求助10
9秒前
果艾琪完成签到,获得积分10
9秒前
slj发布了新的文献求助10
10秒前
qin完成签到,获得积分10
11秒前
11秒前
dd完成签到,获得积分10
11秒前
11秒前
11秒前
cc发布了新的文献求助10
12秒前
HUAhua花发布了新的文献求助10
12秒前
徐明宏完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
郭建福完成签到 ,获得积分10
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700656
求助须知:如何正确求助?哪些是违规求助? 5139977
关于积分的说明 15231492
捐赠科研通 4855808
什么是DOI,文献DOI怎么找? 2605477
邀请新用户注册赠送积分活动 1556862
关于科研通互助平台的介绍 1514921