Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma

胶质母细胞瘤 队列 危险系数 比例危险模型 接收机工作特性 医学 回顾性队列研究 核医学 无进展生存期 磁共振成像 内科学 放射科 总体生存率 癌症研究 置信区间
作者
Louis Gagnon,Diviya Gupta,George Mastorakos,Nathan White,Vanessa Goodwill,Carrie R. McDonald,Thomas Beaumont,Christopher C. Conlin,Tyler M. Seibert,Uyen N. T. Nguyen,Jona A. Hattangadi‐Gluth,Santosh Kesari,Jessica Schulte,David Piccioni,Kathleen M. Schmainda,Nikdokht Farid,Anders M. Dale,Jeffrey D. Rudie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5)
标识
DOI:10.1148/ryai.230489
摘要

. Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans of patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRIs in 1297 patients with glioblastoma, including an internal cohort of 243 MRIs (January 2010-June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists based on imaging, clinical history, and pathology. Multimodal MRI with perfusion and multishell diffusion imaging were inputted into a nnU-Net DL model to segment cellular tumor. Segmentation performance (Dice score) and performance in detecting recurrent tumor from posttreatment changes (area under the receiver operating characteristic curve [AUC]) were quantified. Model performance in predicting OS and PFS was assessed using Cox multivariable analysis. Results A cohort of 178 patients (mean age, 56 years ± [SD]13; 121 male, 57 female) with 243 MRI timepoints, as well as four external datasets with 55, 70, 610 and 419 MRI timepoints, respectively, were evaluated. The median Dice score was 0.79 (IQR:0.53-0.89) and the AUC for detecting residual/recurrent tumor was 0.84 (95% CI:0.79- 0.89). In the internal test set, estimated cellular tumor volume was significantly associated with OS (hazard ratio [HR] = 1.04/mL,
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
amywang1931发布了新的文献求助10
2秒前
3秒前
非洲散打地黄完成签到 ,获得积分10
3秒前
3秒前
乐乐应助在写了采纳,获得10
4秒前
www完成签到,获得积分10
6秒前
WONGPOHKUAN发布了新的文献求助10
7秒前
9秒前
Ava应助rrrrr采纳,获得10
9秒前
10秒前
10秒前
帅气东蒽发布了新的文献求助10
11秒前
YH完成签到,获得积分10
12秒前
15秒前
15秒前
华老师发布了新的文献求助10
15秒前
YH发布了新的文献求助10
16秒前
科目三应助跳跃的语柔采纳,获得10
16秒前
无花果应助想人陪的远锋采纳,获得10
19秒前
西瓜以亦完成签到 ,获得积分10
20秒前
rrrrr发布了新的文献求助10
21秒前
笨笨的蜡烛完成签到,获得积分10
23秒前
思源应助华老师采纳,获得10
24秒前
帅气东蒽完成签到,获得积分10
24秒前
kaikai完成签到,获得积分10
24秒前
贝壳驳回了Owen应助
25秒前
wanci应助诚心的青荷采纳,获得10
26秒前
26秒前
27秒前
27秒前
神勇的半莲完成签到,获得积分10
27秒前
图灵桑完成签到,获得积分10
28秒前
ding应助Abi采纳,获得10
30秒前
Onetwothree完成签到 ,获得积分10
30秒前
30秒前
31秒前
32秒前
33秒前
干净溪流发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
张龙.圣域贤关:孔庙书院等儒家文化遗产保护利用研究[M],北京:文物出版社,2023 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965137
求助须知:如何正确求助?哪些是违规求助? 3510502
关于积分的说明 11153491
捐赠科研通 3244804
什么是DOI,文献DOI怎么找? 1792597
邀请新用户注册赠送积分活动 873928
科研通“疑难数据库(出版商)”最低求助积分说明 804052