Metaheuristics for Solving Global and Engineering Optimization Problems: Review, Applications, Open Issues and Challenges

元启发式 计算机科学 领域(数学) 集合(抽象数据类型) 开放式研究 数据科学 管理科学 人工智能 工程类 数学 万维网 纯数学 程序设计语言
作者
Essam H. Houssein,Mahmoud Khalaf Saeed,Gang Hu,Mustafa M. Al-Sayed
出处
期刊:Archives of Computational Methods in Engineering [Springer Science+Business Media]
卷期号:31 (8): 4485-4519 被引量:33
标识
DOI:10.1007/s11831-024-10168-6
摘要

Abstract The greatest and fastest advances in the computing world today require researchers to develop new problem-solving techniques capable of providing an optimal global solution considering a set of aspects and restrictions. Due to the superiority of the metaheuristic Algorithms (MAs) in solving different classes of problems and providing promising results, MAs need to be studied. Numerous studies of MAs algorithms in different fields exist, but in this study, a comprehensive review of MAs, its nature, types, applications, and open issues are introduced in detail. Specifically, we introduce the metaheuristics' advantages over other techniques. To obtain an entire view about MAs, different classifications based on different aspects (i.e., inspiration source, number of search agents, the updating mechanisms followed by search agents in updating their positions, and the number of primary parameters of the algorithms) are presented in detail, along with the optimization problems including both structure and different types. The application area occupies a lot of research, so in this study, the most widely used applications of MAs are presented. Finally, a great effort of this research is directed to discuss the different open issues and challenges of MAs, which help upcoming researchers to know the future directions of this active field. Overall, this study helps existing researchers understand the basic information of the metaheuristic field in addition to directing newcomers to the active areas and problems that need to be addressed in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助小卡子采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI5应助留胡子的火采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
Tourist应助科研通管家采纳,获得150
3秒前
Akim应助科研通管家采纳,获得10
3秒前
英姑应助吴向宽采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Tourist应助科研通管家采纳,获得150
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
华仔应助Zac采纳,获得10
4秒前
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
zzzy发布了新的文献求助10
5秒前
苏煜杰完成签到,获得积分10
5秒前
三三椋椋发布了新的文献求助10
5秒前
6秒前
猪皮恶人完成签到,获得积分10
6秒前
心静如水发布了新的文献求助10
7秒前
星辰大海应助MGzsss采纳,获得10
7秒前
7秒前
舒心完成签到,获得积分10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343