药物发现
制药工业
药品
计算机科学
数据科学
纳米技术
人工智能
医学
药理学
材料科学
生物信息学
生物
作者
Anthony M. Smaldone,Yu Shee,Gregory W. Kyro,C. Shan Xu,Nam P. Vu,Rishab Dutta,Marwa Farag,Alexey Galda,Sandeep Kumar,Elica Kyoseva,Víctor S. Batista
出处
期刊:Cornell University - arXiv
日期:2024-09-23
被引量:1
标识
DOI:10.48550/arxiv.2409.15645
摘要
The nexus of quantum computing and machine learning - quantum machine learning - offers the potential for significant advancements in chemistry. This review specifically explores the potential of quantum neural networks on gate-based quantum computers within the context of drug discovery. We discuss the theoretical foundations of quantum machine learning, including data encoding, variational quantum circuits, and hybrid quantum-classical approaches. Applications to drug discovery are highlighted, including molecular property prediction and molecular generation. We provide a balanced perspective, emphasizing both the potential benefits and the challenges that must be addressed.
科研通智能强力驱动
Strongly Powered by AbleSci AI