Abstract In this paper, 𝐺 is a finite group and 𝜎 a partition of the set of all primes ℙ, that is, σ={σi∣i∈I} \sigma=\{\sigma_{i}\mid i\in I\} , where P=⋃i∈Iσi \mathbb{P}=\bigcup_{i\in I}\sigma_{i} and σi∩σj=∅ \sigma_{i}\cap\sigma_{j}=\emptyset for all i≠j i\neq j . If 𝑛 is an integer, we write σ(n)={σi∣σi∩π(n)≠∅} \sigma(n)=\{\sigma_{i}\mid\sigma_{i}\cap\pi(n)\neq\emptyset\} and σ(G)=σ(|G|) \sigma(G)=\sigma(\lvert G\rvert) . A group 𝐺 is said to be 𝜎-primary if 𝐺 is a σi \sigma_{i} -group for some i=i(G) i=i(G) and 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary. We say that 𝐺 is a 𝜎-tower group if either G=1 G=1 or 𝐺 has a normal series 1=G0<G1<⋯<Gt-1<Gt=G 1=G_{0}<G_{1}<\cdots<G_{t-1}<G_{t}=G such that Gi/Gi-1 G_{i}/G_{i-1} is a σi \sigma_{i} -group, σi∈σ(G) \sigma_{i}\in\sigma(G) , and G/Gi G/G_{i} and Gi-1 G_{i-1} are σi′ \sigma_{i}^{\prime} -groups for all i=1,…,t i=1,\ldots,t . A subgroup 𝐴 of 𝐺 is said to be 𝜎-subnormal in 𝐺 if there is a subgroup chain A=A0≤A1≤⋯≤At=G A=A_{0}\leq A_{1}\leq\cdots\leq A_{t}=G such that either Ai-1⊴Ai A_{i-1}\trianglelefteq A_{i} or Ai/(Ai-1)Ai A_{i}/(A_{i-1})_{A_{i}} is 𝜎-primary for all i=1,…,t i=1,\ldots,t . In this paper, answering to Question 4.8 in [A. N. Skiba, On 𝜎-subnormal and 𝜎-permutable subgroups of finite groups, J. Algebra 436 (2015), 1–16], we prove that a 𝜎-soluble group G≠1 G\neq 1 with |σ(G)|=n \lvert\sigma(G)\rvert=n is a 𝜎-tower group if each of its (n+1) (n+1) -maximal subgroups is 𝜎-subnormal in 𝐺.