永久冻土
高原(数学)
活动层
气候变化
水文学(农业)
环境科学
地质学
全球变暖
自然地理学
海洋学
地理
岩土工程
数学分析
化学
数学
有机化学
图层(电子)
薄膜晶体管
摘要
Abstract River‐controlled permafrost dynamics are crucial for sediment transport, infrastructure stability, and carbon cycle, yet are not well understood under climate change. Leveraging remotely sensed datasets, in‐situ hydrological observations, and physics‐based models, we reveal overall warming and widening rivers across the Tibetan Plateau in recent decades, driving accelerated sub‐river permafrost thaw. River temperature of a representative section (Tuotuohe River) on the central Tibetan Plateau, has increased notably (0.39°C/decade) from 1985 to 2017, facilitating heat transfer into the underlying permafrost via both convection and conduction. Consequently, the permafrost beneath rivers warms faster (0.37°C–0.66°C/decade) and has a ∼0.5 m thicker active layer than non‐inundated permafrost (0.17°C–0.49°C/decade). With increasing river discharge, the inundated area expands laterally along the riverbed (16.4 m/decade), further accelerating permafrost thaw for previously non‐inundated bars. Under future warmer and wetter climate, the anticipated intensification of sub‐river permafrost degradation will pose risks to riverine infrastructure and amplify permafrost carbon release.
科研通智能强力驱动
Strongly Powered by AbleSci AI