Offset attention with seed generation for point cloud completion

偏移量(计算机科学) 计算机科学 云计算 点云 遥感 人工智能 地质学 操作系统
作者
Yuke Li,Yong Wang,Bin Jiang
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae135
摘要

Abstract Point cloud data acquired through 3D scanning is frequently subject to fragmentation due to the constraints of the scanner’s field of view and occlusions within the scanned object. The ensuing incompleteness in the data can significantly degrade the accuracy of subsequent computational tasks. Traditional methods for predicting complete point clouds from these fragments often fail to capture the fine-grained local details, leading to inaccurate reconstructions. In this work, we introduce a novel neural network architecture designed for point cloud completion that addresses these limitations.Our network accepts an incomplete point cloud and employs a multi-scale feature extraction module, which integrates an offset attention mechanism alongside a feature aggregation module operating across various scales. This dual approach significantly bolsters the network’s capacity to discern both local and global features inherent in the point cloud data. Furthermore, we incorporate a seed generation module within our missing point cloud generator, harnessing a hierarchical feature pyramid network to forecast the entirety of the point cloud. This innovative strategy allows our network to accurately predict the structure of missing regions.Empirical evaluations conducted on the Shapenet-Part and ModelNet10 datasets substantiate the efficacy of our proposed methodology. Our approach outperforms the state-of-the-art PF-Net algorithm, achieving a remarkable reduction in chamfer distance by 16.15$\%$ and 41.87$\%$ on the respective datasets. Visual inspection of the results underscores the robust generalization capabilities of our algorithm, which is particularly evident in scenarios with limited dataset sizes. It adeptly predicts the contours of the missing regions and synthesizes a more comprehensive point cloud shape.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助儒雅沛菡采纳,获得10
刚刚
椰椰发布了新的文献求助10
刚刚
郝勇杰完成签到 ,获得积分10
1秒前
冷酷的宝马完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Hz发布了新的文献求助10
2秒前
Guochunbao完成签到,获得积分10
5秒前
黄hhhhhhhh发布了新的文献求助10
5秒前
活力广缘完成签到,获得积分10
6秒前
传奇3应助tonia采纳,获得10
7秒前
9秒前
ni发布了新的文献求助10
9秒前
zhou_完成签到,获得积分10
10秒前
黄hhhhhhhh完成签到,获得积分10
11秒前
冰激凌发布了新的文献求助20
12秒前
英俊的铭应助韦伯采纳,获得10
12秒前
15秒前
科研通AI6应助环游水星采纳,获得10
17秒前
18秒前
18秒前
BowieHuang应助宇文鹏煊采纳,获得10
18秒前
19秒前
Cheng应助野性的曼香采纳,获得10
19秒前
科研通AI2S应助无心的笑蓝采纳,获得10
21秒前
21秒前
科研通AI6应助再干一杯采纳,获得10
22秒前
田様应助lpc采纳,获得10
22秒前
23秒前
Hz完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
25秒前
刘林完成签到,获得积分10
26秒前
酷波er应助吕方采纳,获得10
27秒前
28秒前
MDHuang发布了新的文献求助10
29秒前
野性的曼香给野性的曼香的求助进行了留言
29秒前
谭代涛发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537977
求助须知:如何正确求助?哪些是违规求助? 4625294
关于积分的说明 14595311
捐赠科研通 4565812
什么是DOI,文献DOI怎么找? 2502718
邀请新用户注册赠送积分活动 1481107
关于科研通互助平台的介绍 1452360