Energy-Confinement 3D Flower-Shaped Cages for AI-Driven Decoding of Metabolic Fingerprints in Cardiovascular Disease Diagnosis

解码方法 疾病 能量(信号处理) 材料科学 纳米技术 物理 医学 计算机科学 内科学 算法 量子力学
作者
Zhiyu Li,Shuyu Zhang,Qianfeng Xiao,Shaoxuan Shui,Pingli Dong,Yujia Jiang,Yuanyuan Chen,Fang Lan,Yong Peng,Binwu Ying,Yao Wu
出处
期刊:ACS Nano [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsnano.4c14656
摘要

Rapid and accurate detection plays a critical role in improving the survival and prognosis of patients with cardiovascular disease, but traditional detection methods are far from ideal for those with suspected conditions. Metabolite analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is considered to be a promising technique for disease diagnosis. However, the performance of core nanomatrixes has limited its clinical application. In this study, we constructed 3D flower-shaped cages based on controllable structured metal-organic frameworks and iron oxide nanoparticles with low thermal conductivity and significant photothermal effects. The elongation of the incident light path through multilayer reflection significantly enhances the effective light absorption area of the nanomatrixes. Concurrently, the alternating layered structure confines the thermal energy, reducing thermal losses. Moreover, the 3D structure increases affinity sites, expanding the detection coverage. This approach effectively enhances the laser ionization and thermal desorption efficiency during the LDI process. We applied this technology to analyze the serum metabolomes of patients with myocardial infarction, heart failure, and heart failure combined with myocardial infarction, achieving cost-effective, high-throughput, highly accurate, and user-friendly detection of cardiovascular diseases. Subsequently, deep analysis of detected serum fingerprints via artificial intelligence models screens potential metabolic biomarkers, providing a new paradigm for the accurate diagnosis of cardiovascular diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingyu完成签到,获得积分10
刚刚
yi5feng完成签到,获得积分10
刚刚
1秒前
野马完成签到,获得积分10
2秒前
dido发布了新的文献求助10
2秒前
康zai完成签到,获得积分10
3秒前
乐乐应助断章采纳,获得10
3秒前
大模型应助kk采纳,获得10
4秒前
刘洋完成签到 ,获得积分10
4秒前
11111完成签到,获得积分20
5秒前
斯文败类应助灵长类采纳,获得30
6秒前
Do完成签到,获得积分10
7秒前
烟花应助维妮妮采纳,获得10
7秒前
8秒前
hzs完成签到,获得积分10
8秒前
FCL发布了新的文献求助10
8秒前
9秒前
12秒前
13秒前
ZhouYW应助Gaost采纳,获得10
13秒前
重要的道之完成签到,获得积分10
13秒前
奔跑的考拉完成签到,获得积分20
14秒前
kk发布了新的文献求助10
17秒前
危机的安容完成签到,获得积分10
18秒前
发财小鱼完成签到 ,获得积分10
19秒前
断章发布了新的文献求助10
19秒前
健壮的板凳完成签到,获得积分10
19秒前
思源应助Melody采纳,获得10
19秒前
水水完成签到,获得积分10
21秒前
lin应助健壮的板凳采纳,获得50
24秒前
24秒前
cdercder应助guozi采纳,获得20
25秒前
zodiac完成签到,获得积分0
26秒前
科研通AI2S应助kk采纳,获得10
26秒前
猪猪hero应助你好采纳,获得10
26秒前
张森阳发布了新的文献求助10
27秒前
聪明伊完成签到,获得积分10
27秒前
SciGPT应助赵婧采纳,获得10
28秒前
寂寞酷鑫完成签到,获得积分10
28秒前
Alexbirchurros完成签到 ,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793430
求助须知:如何正确求助?哪些是违规求助? 3338291
关于积分的说明 10289305
捐赠科研通 3054796
什么是DOI,文献DOI怎么找? 1676177
邀请新用户注册赠送积分活动 804208
科研通“疑难数据库(出版商)”最低求助积分说明 761773