清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

IGBT Junction Temperature Estimation Based on External Parameters of Multiple Drive Devices in Practical Industrial Scenario

绝缘栅双极晶体管 结温 可靠性(半导体) 功率(物理) 安全操作区 瞬态(计算机编程) 滑动窗口协议 功率半导体器件 计算机科学 汽车工程 电子工程 电气工程 工程类 窗口(计算) 电压 操作系统 物理 量子力学
作者
Cheng Su,Wei Jiang,Zhicong Huang
出处
期刊:International Journal of Circuit Theory and Applications [Wiley]
标识
DOI:10.1002/cta.4391
摘要

ABSTRACT The insulated gate bipolar transistor (IGBT) is one of the most important power semiconductor devices in power electronics and is also prone to failure. High junction temperature and junction temperature fluctuation of IGBT are the main causes of IGBT module aging failure. The high‐precision monitoring of the junction temperature of the IGBT module is a prerequisite for IGBT life prediction, which is crucial for reducing maintenance costs and improving equipment reliability. Therefore, an IGBT junction temperature estimation method based on long short‐term memory (LSTM) neural network and sliding window estimation model is proposed and applied in practical industrial scenarios. This method uses the operating data of the motor drive device in the actual industrial application scenario as the training and test data set and uses the external operating parameters of the IGBT module to estimate the junction temperature of the IGBT module. Compared with the internal operating parameters of the IGBT module based on switching transient, the external operating parameters are easier to collect and process, and more suitable for practical application scenes. A sliding window estimation model is proposed to estimate the junction temperature of the IGBT module. Compared with the point‐to‐point estimation method, the sliding window estimation method can capture the influence of historical operation data better and has a higher capability of time series data estimation. The IGBT junction temperature estimation of sliding windows is realized by the LSTM neural network, which is more suitable for time series estimation in real industrial scenarios. The experimental results show that the estimation accuracy of the sliding window estimation method is better than that of the point‐to‐point estimation method, and the accuracy of the sliding window estimation method based on LSTM is better than that of the sliding window estimation method based on other machine learning models. It proves that the proposed method can better capture the dynamic process of the system and has higher estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古藤完成签到 ,获得积分10
6秒前
16秒前
24秒前
TS_W完成签到,获得积分10
25秒前
科研孙完成签到,获得积分10
27秒前
28秒前
钱念波发布了新的文献求助10
30秒前
32秒前
35秒前
39秒前
NexusExplorer应助寒冷的浩轩采纳,获得10
44秒前
完美世界应助寒冷的浩轩采纳,获得10
44秒前
思源应助寒冷的浩轩采纳,获得10
44秒前
清爽的小蜜蜂完成签到,获得积分10
45秒前
48秒前
tdtk发布了新的文献求助10
53秒前
爆米花应助tdtk采纳,获得10
59秒前
zhilianghui0807完成签到 ,获得积分10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
wangsai0532完成签到,获得积分10
1分钟前
lorentzh完成签到,获得积分10
1分钟前
追梦完成签到,获得积分10
1分钟前
如履平川完成签到 ,获得积分10
1分钟前
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
褚明雪完成签到,获得积分10
1分钟前
qiqi完成签到,获得积分10
1分钟前
1分钟前
嘿嘿应助qiqi采纳,获得10
1分钟前
gmc完成签到 ,获得积分10
2分钟前
Hu6868发布了新的文献求助10
2分钟前
2分钟前
CodeCraft应助冷傲鸡翅采纳,获得10
2分钟前
一一完成签到 ,获得积分10
2分钟前
poki完成签到 ,获得积分10
2分钟前
冷傲鸡翅完成签到,获得积分10
2分钟前
Hu6868完成签到,获得积分20
2分钟前
JiangYifan完成签到 ,获得积分10
3分钟前
Hu6868关注了科研通微信公众号
3分钟前
Xzx1995完成签到 ,获得积分10
3分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043451
求助须知:如何正确求助?哪些是违规求助? 3581221
关于积分的说明 11383784
捐赠科研通 3308640
什么是DOI,文献DOI怎么找? 1821127
邀请新用户注册赠送积分活动 893553
科研通“疑难数据库(出版商)”最低求助积分说明 815751