A Dual‐Pipeline Lactate Removal Strategy to Reverse Vascular Hyperpermeability for the Management of Lipopolysaccharide‐Induced Sepsis

败血症 管道(软件) 脂多糖 对偶(语法数字) 医学 材料科学 免疫学 工程类 机械工程 文学类 艺术
作者
Shuangfeng Ge,Xinghuo Wang,Juntao Fan,Haofei Liu,Youtao Xin,Xiaohui Li,Yunjian Yu,Ying‐Wei Yang,Hui Gao
出处
期刊:Advanced Healthcare Materials [Wiley]
标识
DOI:10.1002/adhm.202403592
摘要

Sepsis is an underappreciated yet severe threat to human life, marked by organ dysfunction and high mortality resulting from disordered inflammatory responses to blood infection. Unfortunately, no specific drugs are available for effective sepsis treatment. As a pivotal biomarker for sepsis, lactate levels are closely related to vascular permeability and sepsis-associated mortality. Herein, a dual-pipeline lactate removal strategy is reported from circulating blood to ameliorate vascular permeability and lipopolysaccharide (LPS)-induced sepsis. This is achieved by formulating lactate oxidase (LOX)-encapsulated hollow manganese dioxide (HMnO2) nanohybrids (LOX@HMnO2-P[5]A) bearing pillar[5]arene (P[5]A) macrocycle with excellent host-guest properties. The highly biocompatible nanohybrids enable direct lactate consumption through LOX catalytic degradation and block lactate production by P[5]A-mediated LPS trapping, allowing for dual-pipeline lactate removal to maximize the reversal of lactate-mediated vascular hyperpermeability. Besides, HMnO2 cores decompose hydrogen peroxide produced from lactate oxidation into oxygen, further contributing to lactate consumption and mitigating the hypoxic inflammatory environment. In vivo investigations demonstrate that intravenous administration of LOX@HMnO2-P[5]A nanohybrids with extended blood circulation can effectively ameliorate endothelial barrier dysfunction, inflammatory responses, and multiple organ injury, ultimately improving survival outcomes in LPS-induced sepsis. Taken together, this dual-pipeline lactate removal strategy offers a promising approach for efficient sepsis treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌上苏凉完成签到,获得积分10
3秒前
ly完成签到,获得积分20
7秒前
ydd完成签到,获得积分10
8秒前
研友_VZG7GZ应助陈和合采纳,获得30
9秒前
9秒前
充电宝应助ttsgs123采纳,获得10
9秒前
悦耳羽毛完成签到,获得积分10
10秒前
10秒前
可可可可乐完成签到 ,获得积分10
13秒前
ShiRz发布了新的文献求助10
16秒前
18秒前
搜集达人应助蔡继海采纳,获得10
21秒前
23秒前
陈和合发布了新的文献求助30
24秒前
小乐完成签到 ,获得积分10
25秒前
六个核桃手拉手完成签到 ,获得积分10
26秒前
26秒前
冰魂应助丹丹采纳,获得10
27秒前
秋子发布了新的文献求助10
28秒前
29秒前
ttsgs123完成签到,获得积分10
30秒前
sss完成签到 ,获得积分10
30秒前
30秒前
肥陈发布了新的文献求助10
31秒前
32秒前
32秒前
陈和合完成签到,获得积分10
33秒前
蔡继海发布了新的文献求助10
33秒前
科研小狗完成签到,获得积分10
34秒前
sandwich发布了新的文献求助10
34秒前
Neko发布了新的文献求助10
35秒前
shuangcheng发布了新的文献求助10
37秒前
1z6发布了新的文献求助10
37秒前
秋子完成签到,获得积分10
40秒前
42秒前
wanci应助a啊哈哈哈采纳,获得10
43秒前
46秒前
香蕉觅云应助科研通管家采纳,获得10
46秒前
VDC应助科研通管家采纳,获得30
46秒前
思源应助科研通管家采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776819
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209450
捐赠科研通 3037558
什么是DOI,文献DOI怎么找? 1666761
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976