清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-Driven Battery Health Prognostics Using Time-Frequency Feature Maps and Spatial-Temporal Neural Network

预言 人工神经网络 特征(语言学) 计算机科学 时频分析 电池(电) 人工智能 模式识别(心理学) 数据挖掘 电信 功率(物理) 语言学 哲学 雷达 物理 量子力学
作者
Shao-Hua Xie,Guangzhong Dong,Haonan Chen,Li Sun,Yunjiang Lou
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tvt.2025.3529734
摘要

Lithium-ion batteries have been widely used in various application scenarios, acting as the heart of power storage systems. Reliable prognostics and health management (PHM) play essential roles in the safe operation and reliable maintenance of battery systems. Within this context, a data-driven method based on time-frequency feature maps and spatial-temporal neural networks is proposed for state-of-health estimation and cycle-to-knee prediction. First, raw data is acquired from partial charging curves of different fast-charging protocols to better align with real-world application scenarios. Second, to make full use of frequency domain information, the time-frequency feature maps are generated through continuous wavelet transformation. Then, spatial-temporal information is mapped to battery state-of-health and cycle-to-knee through a convolutional neural network and bidirectional long short-term memory network sequentially. The fusion of spatial-temporal features and the organization done by the attention mechanism contribute to improving battery PHM accuracy. Finally, experiments conducted on LFP/graphite A123 batteries under different fast-charging protocols indicate the effectiveness and superiority of the proposed method. In addition, the ablation experiments are carried out to demonstrate the necessity of each model component. Experimental results show that using time-frequency feature images significantly enhances accuracy, and each component plays a pivotal role in enhancing the overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gszy1975完成签到,获得积分10
4秒前
qq158014169完成签到 ,获得积分10
13秒前
慕青应助葱葱花卷采纳,获得10
22秒前
1分钟前
英俊的铭应助kiki0808采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
葱葱花卷发布了新的文献求助10
1分钟前
kiki0808发布了新的文献求助50
1分钟前
汉堡包应助whynot采纳,获得10
2分钟前
as完成签到 ,获得积分10
2分钟前
yumihuhu发布了新的文献求助10
2分钟前
FashionBoy应助whynot采纳,获得10
2分钟前
梅赛德斯奔驰完成签到,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
Nene发布了新的文献求助10
2分钟前
谢陈完成签到 ,获得积分10
2分钟前
Joceelyn完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助whynot采纳,获得10
3分钟前
老迟到的友桃完成签到 ,获得积分10
3分钟前
3分钟前
moon发布了新的文献求助10
3分钟前
3分钟前
阔达雨灵完成签到,获得积分10
4分钟前
yumihuhu完成签到 ,获得积分10
4分钟前
李志全完成签到 ,获得积分10
4分钟前
隐形曼青应助阔达雨灵采纳,获得10
4分钟前
小青椒应助Nene采纳,获得30
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
5分钟前
阔达雨灵发布了新的文献求助10
5分钟前
5分钟前
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
ding应助虚心的绿茶采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463525
求助须知:如何正确求助?哪些是违规求助? 4568173
关于积分的说明 14312553
捐赠科研通 4494213
什么是DOI,文献DOI怎么找? 2462187
邀请新用户注册赠送积分活动 1451110
关于科研通互助平台的介绍 1426474