Data-Driven Battery Health Prognostics Using Time-Frequency Feature Maps and Spatial-Temporal Neural Network

预言 人工神经网络 特征(语言学) 计算机科学 时频分析 电池(电) 人工智能 模式识别(心理学) 数据挖掘 电信 功率(物理) 语言学 量子力学 物理 哲学 雷达
作者
Shao-Hua Xie,Guangzhong Dong,Haonan Chen,Li Sun,Yunjiang Lou
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tvt.2025.3529734
摘要

Lithium-ion batteries have been widely used in various application scenarios, acting as the heart of power storage systems. Reliable prognostics and health management (PHM) play essential roles in the safe operation and reliable maintenance of battery systems. Within this context, a data-driven method based on time-frequency feature maps and spatial-temporal neural networks is proposed for state-of-health estimation and cycle-to-knee prediction. First, raw data is acquired from partial charging curves of different fast-charging protocols to better align with real-world application scenarios. Second, to make full use of frequency domain information, the time-frequency feature maps are generated through continuous wavelet transformation. Then, spatial-temporal information is mapped to battery state-of-health and cycle-to-knee through a convolutional neural network and bidirectional long short-term memory network sequentially. The fusion of spatial-temporal features and the organization done by the attention mechanism contribute to improving battery PHM accuracy. Finally, experiments conducted on LFP/graphite A123 batteries under different fast-charging protocols indicate the effectiveness and superiority of the proposed method. In addition, the ablation experiments are carried out to demonstrate the necessity of each model component. Experimental results show that using time-frequency feature images significantly enhances accuracy, and each component plays a pivotal role in enhancing the overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的孤兰完成签到,获得积分10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
柚子应助拾捌采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得20
3秒前
斯文败类应助科研通管家采纳,获得30
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研助手6应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
大龙哥886应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Serendipity应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
FJ完成签到,获得积分10
4秒前
卷王完成签到,获得积分10
4秒前
夏天发布了新的文献求助10
5秒前
武雨寒发布了新的文献求助10
5秒前
strama完成签到,获得积分10
5秒前
lql完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
17完成签到 ,获得积分10
12秒前
夏天完成签到,获得积分10
15秒前
15秒前
苗一夫发布了新的文献求助10
15秒前
昵称发布了新的文献求助10
16秒前
16秒前
迷你的隶完成签到,获得积分10
17秒前
月光族完成签到,获得积分10
17秒前
Young完成签到 ,获得积分10
18秒前
Sicily完成签到,获得积分10
18秒前
夜雨听笑完成签到,获得积分10
18秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217570
求助须知:如何正确求助?哪些是违规求助? 3751618
关于积分的说明 11796493
捐赠科研通 3416299
什么是DOI,文献DOI怎么找? 1874990
邀请新用户注册赠送积分活动 928798
科研通“疑难数据库(出版商)”最低求助积分说明 837849