汉密尔顿-雅各比-贝尔曼方程
动态规划
控制器(灌溉)
计算机科学
最优控制
前馈
强化学习
事件(粒子物理)
弹道
跟踪(教育)
控制理论(社会学)
符号
数学优化
控制(管理)
控制工程
人工智能
数学
算法
工程类
物理
算术
量子力学
天文
农学
生物
心理学
教育学
作者
Shan Xue,Ning Zhao,Weidong Zhang,Biao Luo,Derong Liu
标识
DOI:10.1109/tnnls.2024.3512539
摘要
This article presents an efficient method for solving the optimal tracking control policy of unmanned surface vehicles (USVs) using a hybrid adaptive dynamic programming (ADP) approach. This approach integrates data-driven integral reinforcement learning (IRL) and dynamic event-driven (DED) mechanisms into the solution of the control policy of the established augmented system while obtaining both the feedforward and feedback components of the tracking controller. For the USV model and the reference trajectory, an augmented system is established, and the tracking Hamilton–Jacobi–Bellman (HJB) equation is derived based on IRL, aiming to fully utilize system data information and reduce model dependency. For the solution of the tracking HJB equation, the DED-based controller update rule is used to further reduce the burden of network transmission. In implementing the ADP method, the DED experience replay-based weight update rule is utilized to recycle data resources. Experiments show that compared with the static event-driven (SED) approach, the DED approach reduces the sample size by $78\%$ and increases the average interval by about four times.
科研通智能强力驱动
Strongly Powered by AbleSci AI