Safety-assured high-speed navigation for MAVs

避障 障碍物 激光雷达 计算机科学 实时计算 避碰 测距 航程(航空) 敏捷软件开发 模拟 机器人 移动机器人 工程类 航空航天工程 人工智能 碰撞 遥感 电信 计算机安全 软件工程 政治学 法学 地质学
作者
Yunfan Ren,Fangcheng Zhu,Guozheng Lu,Yixi Cai,Longji Yin,Fanze Kong,Jiarong Lin,Nan Chen,Fu Zhang
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:10 (98) 被引量:2
标识
DOI:10.1126/scirobotics.ado6187
摘要

Micro air vehicles (MAVs) capable of high-speed autonomous navigation in unknown environments have the potential to improve applications like search and rescue and disaster relief, where timely and safe navigation is critical. However, achieving autonomous, safe, and high-speed MAV navigation faces systematic challenges, necessitating reduced vehicle weight and size for high-speed maneuvering, strong sensing capability for detecting obstacles at a distance, and advanced planning and control algorithms maximizing flight speed while ensuring obstacle avoidance. Here, we present the safety-assured high-speed aerial robot (SUPER), a compact MAV with a 280-millimeter wheelbase and a thrust-to-weight ratio greater than 5.0, enabling agile flight in cluttered environments. SUPER uses a lightweight three-dimensional light detection and ranging (LIDAR) sensor for accurate, long-range obstacle detection. To ensure high-speed flight while maintaining safety, we introduced an efficient planning framework that directly plans trajectories using LIDAR point clouds. In each replanning cycle, two trajectories were generated: one in known free spaces to ensure safety and another in both known and unknown spaces to maximize speed. Compared with baseline methods, this framework reduced failure rates by 35.9 times while flying faster and with half the planning time. In real-world tests, SUPER achieved autonomous flights at speeds exceeding 20 meters per second, successfully avoiding thin obstacles and navigating narrow spaces. SUPER represents a milestone in autonomous MAV systems, bridging the gap from laboratory research to real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dilli完成签到 ,获得积分0
1秒前
MS903完成签到 ,获得积分10
1秒前
赘婿应助lala采纳,获得10
3秒前
bellapp完成签到 ,获得积分10
3秒前
4秒前
动人的怀柔完成签到,获得积分10
8秒前
demotlx发布了新的文献求助10
9秒前
just do it完成签到,获得积分10
9秒前
jhb完成签到 ,获得积分10
10秒前
xinC完成签到 ,获得积分10
11秒前
BBking完成签到,获得积分10
15秒前
demotlx完成签到,获得积分10
15秒前
科研通AI5应助朽木采纳,获得10
15秒前
16秒前
今后应助nano_yan采纳,获得10
17秒前
SU完成签到,获得积分10
21秒前
22秒前
wait完成签到,获得积分20
22秒前
23秒前
23秒前
23秒前
Yojane完成签到,获得积分10
24秒前
可爱的猪猪完成签到,获得积分10
26秒前
27秒前
hrzmlily发布了新的文献求助10
27秒前
Yojane发布了新的文献求助30
27秒前
ling发布了新的文献求助10
28秒前
32秒前
33秒前
feiyang完成签到 ,获得积分10
34秒前
35秒前
36秒前
nano_yan发布了新的文献求助10
36秒前
38秒前
39秒前
XYZ发布了新的文献求助10
39秒前
唯梦发布了新的文献求助10
40秒前
Summeryz920发布了新的文献求助10
42秒前
FashionBoy应助唯梦采纳,获得10
43秒前
hrzmlily完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944