Evidence That Growth Mixture Model Results Are Highly Sensitive to Scoring Decisions

计量经济学 计算机科学 心理学 统计 数学
作者
James Soland,Veronica T. Cole,Stephen Tavares,Qilin Zhang
出处
期刊:Multivariate Behavioral Research [Taylor & Francis]
卷期号:: 1-22
标识
DOI:10.1080/00273171.2024.2444955
摘要

Interest in identifying latent growth profiles to support the psychological and social-emotional development of individuals has translated into the widespread use of growth mixture models (GMMs). In most cases, GMMs are based on scores from item responses collected using survey scales or other measures. Research already shows that GMMs can be sensitive to departures from ideal modeling conditions and that growth model results outside of GMMs are sensitive to decisions about how item responses are scored, but the impact of scoring decisions on GMMs has never been investigated. We start to close that gap in the literature with the current study. Through empirical and Monte Carlo studies, we show that GMM results-including convergence, class enumeration, and latent growth trajectories within class-are extremely sensitive to seemingly arcane measurement decisions. Further, our results make clear that, because GMM latent classes are not known a priori, measurement models used to produce scores for use in GMMs are, almost by definition, misspecified because they cannot account for group membership. Misspecification of the measurement model then, in turn, biases GMM results. Practical implications of these results are discussed. Our findings raise serious concerns that many results in the current GMM literature may be driven, in part or whole, by measurement artifacts rather than substantive differences in developmental trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山语发布了新的文献求助10
刚刚
kaifeiQi完成签到,获得积分10
刚刚
1秒前
n3pu030036应助不知道采纳,获得10
1秒前
TIGun发布了新的文献求助10
2秒前
赘婿应助kytmm2022采纳,获得30
3秒前
4秒前
Ace_killer发布了新的文献求助10
5秒前
5秒前
偷乐发布了新的文献求助30
6秒前
科研通AI5应助sunshine采纳,获得10
6秒前
7秒前
8秒前
简单平蓝发布了新的文献求助10
9秒前
9秒前
9秒前
郁金香发布了新的文献求助10
10秒前
unique完成签到,获得积分10
11秒前
包佳梁发布了新的文献求助10
13秒前
13秒前
unique发布了新的文献求助10
14秒前
Co发布了新的文献求助10
14秒前
hulala发布了新的文献求助10
14秒前
郁金香完成签到,获得积分10
16秒前
荣耀发布了新的文献求助10
17秒前
18秒前
Rico发布了新的文献求助10
18秒前
master_jia完成签到,获得积分10
19秒前
WDK完成签到,获得积分10
20秒前
隐形曼青应助sxp1031采纳,获得10
23秒前
美满的小蘑菇完成签到 ,获得积分10
23秒前
23秒前
lxw完成签到 ,获得积分10
25秒前
Yiyyan完成签到,获得积分10
26秒前
Co完成签到 ,获得积分10
27秒前
冰魂应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
乔垣结衣应助科研通管家采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385