亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction and validation of a predictive model for meningoencephalitis in pediatric scrub typhus based on machine learning algorithms

算法 脑膜脑炎 病毒学 恙虫病 计算机科学 机器学习 医学 人工智能
作者
Yonghan Luo,Wenrui Ding,Xiaotao Yang,H. Y. Bai,Jiao Feng,Guo Yan,Ting Zhang,Xiu Zou,Yanchun Wang
出处
期刊:Emerging microbes & infections [Informa]
卷期号:14 (1): 2469651-2469651 被引量:9
标识
DOI:10.1080/22221751.2025.2469651
摘要

To retrospectively analyze the clinical characteristics of pediatric scrub typhus (ST) with meningoencephalitis (STME) and to construct and validate predictive models using machine learning.Clinical data were collected from 100 cases of pediatric STME and matched with data from 100 ST cases without meningitis using propensity-score matching. Risk factors for STME in pediatrics were identified through the least absolute shrinkage and selection operator (LASSO) regression analysis. Six predictive models-Logistic Regression, K-Nearest Neighbors, Naive Bayes, Multi-layer Perceptron(MLP), Random Forest, and XGBoost-were constructed using the training set and evaluated for performance, with validation conducted on the test set. The Shapley Additive Explanations (SHAP) method was applied to rank the importance of each variable.All children improved and were discharged following treatment with azithromycin/doxycycline (1/99). Twelve variable features were identified through the LASSO regression. Of the six predictive models developed, the XGBoost model demonstrated the highest performance in the training set (AUC = 0.926), though its performance in the test set was moderate (AUC = 0.740). The MLP model exhibited robust predictive performance in both training and test sets, with AUCs of 0.897 and 0.817, respectively. Clinical decision curve analysis indicated that the MLP and XGBoost models provide significant clinical utility. SHAP analysis identified the most important predictors for STME as ferritin, white blood cell count, edema, prothrombin time, fibrinogen, duration of pre-admission fever, eschar, activated partial thromboplastin time, splenomegaly, and headache. The MLP and XGBoost models showed strong predictive capability for pediatric STME, with favorable outcomes following doxycycline-based therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wakawaka完成签到 ,获得积分10
18秒前
27秒前
taffysl完成签到,获得积分10
28秒前
DL发布了新的文献求助10
31秒前
搜集达人应助budingman采纳,获得10
31秒前
安青兰完成签到 ,获得积分10
33秒前
卷毛维安完成签到 ,获得积分10
44秒前
CodeCraft应助DL采纳,获得10
50秒前
顾矜应助chowder采纳,获得30
51秒前
57秒前
stoss发布了新的文献求助10
1分钟前
1分钟前
budingman发布了新的文献求助10
1分钟前
budingman发布了新的文献求助10
1分钟前
budingman发布了新的文献求助10
1分钟前
budingman发布了新的文献求助10
1分钟前
budingman发布了新的文献求助50
1分钟前
budingman发布了新的文献求助10
1分钟前
budingman发布了新的文献求助30
1分钟前
budingman发布了新的文献求助10
1分钟前
1分钟前
chowder发布了新的文献求助30
1分钟前
无情的琳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小李发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
糕冷草莓完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
abull完成签到,获得积分10
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
obedVL完成签到,获得积分10
2分钟前
2分钟前
传奇3应助无情的琳采纳,获得10
2分钟前
2分钟前
立夏完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723793
求助须知:如何正确求助?哪些是违规求助? 5281025
关于积分的说明 15299145
捐赠科研通 4872071
什么是DOI,文献DOI怎么找? 2616558
邀请新用户注册赠送积分活动 1566354
关于科研通互助平台的介绍 1523235