DPD-YOLO: dense pineapple fruit target detection algorithm in complex environments based on YOLOv8 combined with attention mechanism

计算机科学 人工智能 水准点(测量) 目标检测 无人机 深度学习 棱锥(几何) 计算机视觉 模式识别(心理学) 地理 数学 地图学 生物 几何学 遗传学
作者
Cong Lin,W. G. Jiang,Weiye Zhao,Lilan Zou,Zhong Xue
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:16: 1523552-1523552 被引量:4
标识
DOI:10.3389/fpls.2025.1523552
摘要

With the development of deep learning technology and the widespread application of drones in the agricultural sector, the use of computer vision technology for target detection of pineapples has gradually been recognized as one of the key methods for estimating pineapple yield. When images of pineapple fields are captured by drones, the fruits are often obscured by the pineapple leaf crowns due to their appearance and planting characteristics. Additionally, the background in pineapple fields is relatively complex, and current mainstream target detection algorithms are known to perform poorly in detecting small targets under occlusion conditions in such complex backgrounds. To address these issues, an improved YOLOv8 target detection algorithm, named DPD-YOLO (Dense-Pineapple-Detection YOU Only Look Once), has been proposed for the detection of pineapples in complex environments. The DPD-YOLO model is based on YOLOv8 and introduces the attention mechanism (Coordinate Attention) to enhance the network’s ability to extract features of pineapples in complex backgrounds. Furthermore, the small target detection layer has been fused with BiFPN (Bi-directional Feature Pyramid Network) to strengthen the integration of multi-scale features and enrich the extraction of semantic features. At the same time, the original YOLOv8 detection head has been replaced by the RT-DETR detection head, which incorporates Cross-Attention and Self-Attention mechanisms that improve the model’s detection accuracy. Additionally, Focaler-IoU has been employed to improve CIoU, allowing the network to focus more on small targets. Finally, high-resolution images of the pineapple fields were captured using drones to create a dataset, and extensive experiments were conducted. The results indicate that, compared to existing mainstream target detection models, the proposed DPD-YOLO demonstrated superior detection performance for pineapples in situations where the background is complex and the targets are occluded. The mAP@0.5 reached 62.0%, representing an improvement of 6.6% over the original YOLOv8 algorithm, Precision increased by 2.7%, Recall improved by 13%, and F1-score rose by 10.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIKUN完成签到,获得积分10
1秒前
清和漾完成签到,获得积分10
4秒前
luna完成签到 ,获得积分10
5秒前
李德胜完成签到,获得积分10
6秒前
从容的代真应助zyj采纳,获得30
6秒前
浮游应助Jia采纳,获得10
8秒前
紫色水晶之恋完成签到,获得积分10
10秒前
科目三应助xx采纳,获得10
12秒前
shenzz完成签到,获得积分20
13秒前
快乐慕灵完成签到,获得积分10
15秒前
shenzz发布了新的文献求助10
17秒前
追寻元菱应助ccm采纳,获得10
19秒前
zyj给zyj的求助进行了留言
20秒前
超级无敌幸运星完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
飘逸问薇完成签到 ,获得积分0
24秒前
完美迎梦完成签到,获得积分10
24秒前
可乐包饭发布了新的文献求助10
25秒前
langbuyu完成签到,获得积分10
26秒前
27秒前
27秒前
29秒前
深情安青应助大白采纳,获得10
29秒前
大神瓜发布了新的文献求助10
30秒前
抹茶小鱼仔完成签到 ,获得积分10
32秒前
33秒前
慢羊羊完成签到 ,获得积分10
33秒前
刘刘完成签到 ,获得积分10
33秒前
34秒前
37秒前
38秒前
让我瞅瞅发布了新的文献求助10
39秒前
myduty完成签到 ,获得积分10
41秒前
Humorous发布了新的文献求助10
41秒前
44秒前
45秒前
糊涂涂完成签到,获得积分10
45秒前
顺心花瓣发布了新的文献求助10
49秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214566
求助须知:如何正确求助?哪些是违规求助? 4390065
关于积分的说明 13668610
捐赠科研通 4251511
什么是DOI,文献DOI怎么找? 2332702
邀请新用户注册赠送积分活动 1330319
关于科研通互助平台的介绍 1284027