生态系统
土壤酸化
农学
生物量(生态学)
生态学
环境科学
土壤pH值
土壤水分
化学
环境化学
生物
作者
Ying Zhang,Ruzhen Wang,Baitao Gu,Heyong Liu,Feike A. Dijkstra,Xingguo Han,Yong Jiang
出处
期刊:Ecology
[Wiley]
日期:2025-01-01
卷期号:106 (1)
被引量:3
摘要
Abstract Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A 15 N‐labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil‐acidification gradient in a meadow. The 15 N added to the ecosystem was mainly intercepted by the soil (up to 87.3%). Within the soil, 15 N recovery in ammonium, dissolved organic N, microbial biomass, and amino sugars (a proxy for microbial necromass) represented approximately 46% of soil‐retained 15 N. 15 N recovery in these N fractions increased with acidification, highlighting the complexity of microbial N transformations that affect ecosystem N retention. Plant 15 N‐retention increased in sedges, decreased in forbs, and was unaffected in grasses with acidification, reflecting their divergent associations with mycorrhizas and sensitivities to soil acidification. Soil microbial biomass was the key variable delineating soil N retention, while sedges were critical for plant N retention, resulting in a clear trade‐off and competition in 15 N retention between the two compartments. Overall, acidification might curb N losses by strengthening microbial retention and shifting plant N retention among different plant growth strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI