Predictive Analysis of Groundwater Resources Using Random Forest Regression

随机森林 地下水 回归分析 环境科学 地下水资源 水资源管理 统计 林业 计算机科学 地理 数学 地质学 含水层 人工智能 岩土工程
作者
Khaled Khaled,Manish Kumar Singla
标识
DOI:10.54216/jaim.090102
摘要

The lack of water is one of the most crucial problems of our day; therefore, optimized water resource management and predictions gathered by patrons are of utmost importance. In the turmoil of a country like India, which lives a variety of lifestyles and has a complicated network of rivers, the urgent need for an active point of view to take care of water shortages becomes exceptionally vital. In this study, India’s groundwater, available at the district level for the year 2017, was the area of focus, with this analysis utilizing a dataset of 689 rows, each representing a district, and 16 columns describing the various groundwater extraction and recharge metrics. The study involves five regression models adapting RandomForestRegressor, DecisionTreeRegressor, MLPRegressor, KNeighborsRegressor, and SupportVectorRegression for water resource evaluation and prediction. Every model is appraised by using a thorough metrics set where we incorporate Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Explained Variance Score (EVS), Max Error, Median Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), R-squared (R2), among others. Our results put the spotlight on RandomForestRegressor, making MSE measures the same as 0.000206624, endorsing its better performance versus the criteria considered. The approach used in this model provides us with an ensemble effect that makes it more robust in the sense that we can capture the interrelationships within the dataset in a comprehensive way. DecisionTreeRegressor also provides nice options for precision and transparency. The use of such models depicts the potential value of predictive analytics, which has the role of improving resource management and planning because we can all agree that the impending water crisis is also a fact. These research outcomes provide us with important data for well-informed decisionmaking and strategic management of water reserves through all avenues and most affected areas to air most of the impact of water scarcity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小南完成签到,获得积分10
1秒前
万能图书馆应助Assure采纳,获得10
2秒前
YG发布了新的文献求助20
3秒前
3秒前
3秒前
Lucas应助12采纳,获得10
3秒前
3秒前
galaxy发布了新的文献求助10
4秒前
yyb1993发布了新的文献求助10
4秒前
hanzhipad应助wwww采纳,获得10
4秒前
里面发布了新的文献求助10
5秒前
nibaba完成签到,获得积分10
5秒前
blank12完成签到,获得积分10
5秒前
zhang完成签到,获得积分10
5秒前
VVV完成签到,获得积分10
5秒前
wuwuwu完成签到,获得积分20
5秒前
咕噜咕噜完成签到,获得积分10
6秒前
Chunlan发布了新的文献求助10
6秒前
神勇的代荷完成签到 ,获得积分10
6秒前
Grinder发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Kiosta应助凉小远采纳,获得10
8秒前
8秒前
8秒前
虞小渔完成签到,获得积分10
9秒前
鲜艳的手链完成签到,获得积分10
9秒前
把的蛮耐得烦完成签到,获得积分10
9秒前
温暖囧完成签到 ,获得积分10
9秒前
Mine发布了新的文献求助10
9秒前
我是老大应助sdl采纳,获得10
9秒前
小新年发布了新的文献求助10
9秒前
10秒前
远_09完成签到 ,获得积分10
11秒前
王羊补牢发布了新的文献求助10
12秒前
张菁完成签到,获得积分10
12秒前
菠萝炒饭应助wwww采纳,获得10
13秒前
无花果应助小陆同学采纳,获得10
13秒前
开朗发卡发布了新的文献求助10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383312
关于积分的说明 10529152
捐赠科研通 3103372
什么是DOI,文献DOI怎么找? 1709237
邀请新用户注册赠送积分活动 823008
科研通“疑难数据库(出版商)”最低求助积分说明 773764