Predictive Analysis of Groundwater Resources Using Random Forest Regression

随机森林 地下水 回归分析 环境科学 地下水资源 水资源管理 统计 林业 计算机科学 地理 数学 地质学 含水层 人工智能 岩土工程
作者
Khaled Khaled,Manish Kumar Singla
标识
DOI:10.54216/jaim.090102
摘要

The lack of water is one of the most crucial problems of our day; therefore, optimized water resource management and predictions gathered by patrons are of utmost importance. In the turmoil of a country like India, which lives a variety of lifestyles and has a complicated network of rivers, the urgent need for an active point of view to take care of water shortages becomes exceptionally vital. In this study, India’s groundwater, available at the district level for the year 2017, was the area of focus, with this analysis utilizing a dataset of 689 rows, each representing a district, and 16 columns describing the various groundwater extraction and recharge metrics. The study involves five regression models adapting RandomForestRegressor, DecisionTreeRegressor, MLPRegressor, KNeighborsRegressor, and SupportVectorRegression for water resource evaluation and prediction. Every model is appraised by using a thorough metrics set where we incorporate Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Explained Variance Score (EVS), Max Error, Median Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), R-squared (R2), among others. Our results put the spotlight on RandomForestRegressor, making MSE measures the same as 0.000206624, endorsing its better performance versus the criteria considered. The approach used in this model provides us with an ensemble effect that makes it more robust in the sense that we can capture the interrelationships within the dataset in a comprehensive way. DecisionTreeRegressor also provides nice options for precision and transparency. The use of such models depicts the potential value of predictive analytics, which has the role of improving resource management and planning because we can all agree that the impending water crisis is also a fact. These research outcomes provide us with important data for well-informed decisionmaking and strategic management of water reserves through all avenues and most affected areas to air most of the impact of water scarcity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yi完成签到 ,获得积分10
1秒前
3333发布了新的文献求助10
1秒前
烟花应助踏雪去哪儿了采纳,获得10
1秒前
2秒前
dracovu发布了新的文献求助10
2秒前
tierra发布了新的文献求助10
2秒前
文艺点点完成签到,获得积分10
2秒前
科研F5完成签到,获得积分10
2秒前
窦慕卉完成签到,获得积分10
3秒前
领导范儿应助公卫小白采纳,获得10
7秒前
tierra完成签到,获得积分10
10秒前
3333完成签到,获得积分10
11秒前
孤独的涔完成签到,获得积分10
14秒前
14秒前
14秒前
火龙果发布了新的文献求助20
14秒前
16秒前
诚心的小熊猫完成签到,获得积分10
16秒前
111完成签到 ,获得积分10
18秒前
zhinian完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
飘逸成威发布了新的文献求助10
21秒前
Zhuzhu发布了新的文献求助10
22秒前
22秒前
研友_VZG7GZ应助小铭采纳,获得10
23秒前
24秒前
25秒前
火龙果发布了新的文献求助10
25秒前
28秒前
mhcsci发布了新的文献求助10
29秒前
jf发布了新的文献求助10
32秒前
33秒前
36秒前
Ava应助jianghs采纳,获得30
36秒前
异、空完成签到,获得积分10
39秒前
mhcsci完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
天天快乐应助jf采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314123
求助须知:如何正确求助?哪些是违规求助? 3833469
关于积分的说明 11993042
捐赠科研通 3473737
什么是DOI,文献DOI怎么找? 1904893
邀请新用户注册赠送积分活动 951670
科研通“疑难数据库(出版商)”最低求助积分说明 853181