Nanoconfined and Chemically Bonded MnO@Mn2O3 Heterojunctions Within Carbon Nanotubes for Fibrous Supercapacitor with Ultra‐Long Cycle Stability

材料科学 碳纳米管 超级电容器 X射线光电子能谱 氧烷 化学工程 异质结 纳米技术 复合材料 电容 电极 光谱学 光电子学 物理化学 化学 物理 量子力学 工程类
作者
Juan Zhang,Rui Gao,Xiaona Yang,Qianyi Ma,Haoze Zhang,Weinan Zhao,Qingli Xu,Aixi Pan,Xinyi Chen,Jian Wang,Ning Chen,Xinhou Wang,Aiping Yu,Kun Zhang
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202418734
摘要

Abstract Carbon‐based fibrous supercapacitors (FSSCs) are promising power sources for wearable electronics, often compounding with transition metal oxides (TMOs) to improve energy density. However, conventional methods introducing TMOs onto exterior surfaces of carbon‐based fibers typically degrade electrical transport and cycle stability. Herein, nanoconfined MnO@Mn 2 O 3 heterojunctions within carbon nanotube (CNT) (MOIC) composite FSSCs stabilized by Mn─O─C bonds, exhibiting record cycle stability with 95.7% capacitance retention after 10 000 cycles and 89.4% after 50 000 cycles are reported. X‐ray absorption near edge structure (XANES), X‐ray diffraction, and X‐ray photoelectron spectroscopy (XPS) analyses confirm MnO@Mn 2 O 3 heterostructure, which arises through a partial phase transformation from MnO to Mn 2 O 3 , as further supported by density functional theory calculations. Mn─O─C chemical bonds, as verified through XPS, extended X‐ray absorption fine structure, and XANES analyses, facilitate 3D electron transport, enabling MOIC composite fiber superior electrical conductivity than CNT fiber. The nanoconfinement of Mn 2+ within CNTs, driven by capillary effects and electrostatic repulsion between protonated CNTs and Mn 2+ , preserves the clean exterior surfaces of CNTs. This configuration enables the successful wet‐spinning of MOIC composite fibers with three times the tensile strength of fibers without nanoconfinement. This work opens new pathways for designing carbon/metal oxide hybridized supercapacitors for wearable energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助kyo采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
wsy应助19833281317采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得100
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
苹果果汁完成签到,获得积分10
3秒前
3秒前
4秒前
风趣曼梅发布了新的文献求助10
5秒前
yyy完成签到 ,获得积分10
7秒前
shinn发布了新的文献求助10
11秒前
12秒前
1134发布了新的文献求助10
13秒前
nono1031完成签到 ,获得积分10
14秒前
feitian201861完成签到,获得积分10
15秒前
SMLW发布了新的文献求助10
18秒前
jiayou完成签到,获得积分10
24秒前
尊敬的惠发布了新的文献求助10
24秒前
完美世界应助meili采纳,获得10
24秒前
赘婿应助虎啊虎啊采纳,获得10
26秒前
27秒前
狂野飞柏完成签到 ,获得积分10
28秒前
33秒前
田様应助沉默的龙采纳,获得10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964651
求助须知:如何正确求助?哪些是违规求助? 3510169
关于积分的说明 11151848
捐赠科研通 3244291
什么是DOI,文献DOI怎么找? 1792365
邀请新用户注册赠送积分活动 873801
科研通“疑难数据库(出版商)”最低求助积分说明 803957