Discovering optical performance enhancers in perovskite materials through machine learning-based feature analysis

光学 钙钛矿(结构) 特征(语言学) 材料科学 计算机科学 光学材料 物理 工程类 哲学 语言学 化学工程
作者
Yimo Song,Xiangnong Wu,K Wang,Yiwen Zhang
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:33 (1): 776-776 被引量:1
标识
DOI:10.1364/oe.543372
摘要

Perovskites attract significant attention as a coating material in optical fiber sensing, but challenges remain due to the limited discovery of suitable materials and the high trial-and-error costs, resulting in only a few perovskites being used in optical sensing experiments. Addressing this issue, a novel systematic computational screening strategy for perovskites is established. This strategy is demonstrated to accelerate the discovery of perovskite coating materials that can enhance optical sensing sensitivity. These perovskites are defined in this study as optical fiber performance enhancers (POPEs). For the most accurate prediction results, 10 sampling methods combined with 10 classification algorithms are compared. Following 100 comparative experiments, the model using the SMOTE-ENN sampling methods and the label spreading (LS) algorithms shows 100% accuracy and precision in leaving-one-out cross-validation (LOOCV). However, this result should be supported with further experiments and numerical simulations. Finally, we feed 500 samples of photonic, piezoelectric, ferroelectric, magnetic, and other perovskite materials into the optimal model, resulting in 237 potential POPEs for the first time. Meanwhile, we predicted the probabilities of forming POPEs using 10 perovskites commonly used in the field of fluorescence sensing. The obtained values of probability of forming POPEs are all over 91%, which indirectly validates our screening strategy for perovskites is effective. These 237 POPEs show promising prospects for becoming the forefront materials in the next generation of fiber optic sensing technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
带路完成签到,获得积分10
刚刚
善学以致用应助平静吧采纳,获得10
2秒前
3秒前
龙无赖完成签到,获得积分10
4秒前
4秒前
醉熏的荆完成签到,获得积分20
5秒前
8秒前
8秒前
元谷雪发布了新的文献求助10
9秒前
automan完成签到,获得积分10
11秒前
传奇3应助不乖斋采纳,获得10
12秒前
21发布了新的文献求助10
13秒前
douning发布了新的文献求助10
13秒前
万寿宫人完成签到,获得积分10
14秒前
15秒前
15秒前
n0rthstar完成签到,获得积分10
15秒前
15秒前
16秒前
123完成签到,获得积分20
17秒前
19秒前
ljb完成签到,获得积分10
19秒前
n0rthstar发布了新的文献求助10
20秒前
22秒前
24秒前
25秒前
SciGPT应助zs采纳,获得10
25秒前
123发布了新的文献求助10
26秒前
nini完成签到,获得积分10
26秒前
单薄井完成签到,获得积分10
27秒前
27秒前
28秒前
乐乐应助CYP450采纳,获得10
29秒前
Rune发布了新的文献求助10
31秒前
小二郎应助嗷呜小老虎WHY采纳,获得10
31秒前
32秒前
33秒前
不乖斋发布了新的文献求助10
33秒前
慕青应助wp4455777采纳,获得10
34秒前
完美世界应助qmhx采纳,获得10
35秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
China's State Ideology and the Three Gorges Dam 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903485
求助须知:如何正确求助?哪些是违规求助? 3448153
关于积分的说明 10852406
捐赠科研通 3173738
什么是DOI,文献DOI怎么找? 1753472
邀请新用户注册赠送积分活动 847767
科研通“疑难数据库(出版商)”最低求助积分说明 790419