亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contributions of attention to learning in multidimensional reward environments

会合(天文学) 特征(语言学) 任务(项目管理) 强化学习 心理学 机器学习 认知心理学 人工智能 计算机科学 哲学 语言学 物理 管理 天文 经济
作者
Michael Wang,Alireza Soltani
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e2300232024-e2300232024
标识
DOI:10.1523/jneurosci.2300-23.2024
摘要

Real-world choice options have many features or attributes, whereas the reward outcome from those options only depends on a few features or attributes. It has been shown that humans learn and combine feature-based with more complex conjunction-based learning to tackle challenges of learning in naturalistic reward environments. However, it remains unclear how different learning strategies interact to determine what features or conjunctions should be attended to and control choice behavior, and how subsequent attentional modulations influence future learning and choice. To address these questions, we examined the behavior of male and female human participants during a three-dimensional learning task in which reward outcomes for different stimuli could be predicted based on a combination of an informative feature and conjunction. Using multiple approaches, we found that both choice behavior and reward probabilities estimated by participants were most accurately described by attention-modulated models that learned the predictive values of both the informative feature and the informative conjunction. Specifically, in the reinforcement learning model that best fit choice data, attention was controlled by the difference in the integrated feature and conjunction values. The resulting attention weights modulated learning by increasing the learning rate on attended features and conjunctions. Critically, modulating decision making by attention weights did not improve the fit of data, providing little evidence for direct attentional effects on choice. These results suggest that in multidimensional environments, humans direct their attention not only to selectively process reward-predictive attributes, but also to find parsimonious representations of the reward contingencies for more efficient learning. Significance Statement From trying exotic recipes to befriending new social groups, outcomes of real-life actions depend on many factors, but how do we learn the predictive values of those factors based on feedback we receive? It has been shown that humans simplify this problem by focusing on individual features that are most predictive of the outcomes but can extend their learning strategy to include combinations of features when necessary. Here, we examined interaction between attention and learning in a multidimensional reward environment that requires learning about individual features and their conjunctions. Using multiple approaches, we found that learning about features and conjunctions control attention in a cooperative manner and that the ensuing attentional modulations mainly affects future learning and not decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yini完成签到,获得积分10
1秒前
2秒前
wangzian完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
隐形曼青应助璐璐侠采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
52秒前
量子星尘发布了新的文献求助10
1分钟前
haha给haha的求助进行了留言
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
Ly完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
嘿嘿应助Ly采纳,获得10
3分钟前
3分钟前
3分钟前
Krim完成签到 ,获得积分10
3分钟前
ly发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
乐乐应助ly采纳,获得10
4分钟前
jack_kunn完成签到,获得积分20
4分钟前
充电宝应助Jessie采纳,获得10
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
Jessie发布了新的文献求助10
4分钟前
林夕完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
FashionBoy应助给爷冲奶粉采纳,获得10
5分钟前
6分钟前
Amy完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
lin.xy完成签到,获得积分10
7分钟前
MMMMM应助haha采纳,获得30
8分钟前
8分钟前
8分钟前
给爷冲奶粉完成签到,获得积分10
8分钟前
彩虹儿应助twk采纳,获得10
8分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4222636
求助须知:如何正确求助?哪些是违规求助? 3755793
关于积分的说明 11806849
捐赠科研通 3418805
什么是DOI,文献DOI怎么找? 1876376
邀请新用户注册赠送积分活动 929952
科研通“疑难数据库(出版商)”最低求助积分说明 838341