Contributions of attention to learning in multidimensional reward environments

会合(天文学) 特征(语言学) 任务(项目管理) 强化学习 心理学 机器学习 认知心理学 人工智能 计算机科学 天文 语言学 物理 哲学 经济 管理
作者
Michael Wang,Alireza Soltani
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e2300232024-e2300232024
标识
DOI:10.1523/jneurosci.2300-23.2024
摘要

Real-world choice options have many features or attributes, whereas the reward outcome from those options only depends on a few features or attributes. It has been shown that humans learn and combine feature-based with more complex conjunction-based learning to tackle challenges of learning in naturalistic reward environments. However, it remains unclear how different learning strategies interact to determine what features or conjunctions should be attended to and control choice behavior, and how subsequent attentional modulations influence future learning and choice. To address these questions, we examined the behavior of male and female human participants during a three-dimensional learning task in which reward outcomes for different stimuli could be predicted based on a combination of an informative feature and conjunction. Using multiple approaches, we found that both choice behavior and reward probabilities estimated by participants were most accurately described by attention-modulated models that learned the predictive values of both the informative feature and the informative conjunction. Specifically, in the reinforcement learning model that best fit choice data, attention was controlled by the difference in the integrated feature and conjunction values. The resulting attention weights modulated learning by increasing the learning rate on attended features and conjunctions. Critically, modulating decision making by attention weights did not improve the fit of data, providing little evidence for direct attentional effects on choice. These results suggest that in multidimensional environments, humans direct their attention not only to selectively process reward-predictive attributes, but also to find parsimonious representations of the reward contingencies for more efficient learning. Significance Statement From trying exotic recipes to befriending new social groups, outcomes of real-life actions depend on many factors, but how do we learn the predictive values of those factors based on feedback we receive? It has been shown that humans simplify this problem by focusing on individual features that are most predictive of the outcomes but can extend their learning strategy to include combinations of features when necessary. Here, we examined interaction between attention and learning in a multidimensional reward environment that requires learning about individual features and their conjunctions. Using multiple approaches, we found that learning about features and conjunctions control attention in a cooperative manner and that the ensuing attentional modulations mainly affects future learning and not decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助qinzhikai采纳,获得10
1秒前
sci完成签到 ,获得积分10
4秒前
简单乐荷发布了新的文献求助30
5秒前
酷波er应助xiaoyi采纳,获得10
8秒前
demoestar完成签到 ,获得积分10
9秒前
笑点低薯片完成签到,获得积分10
10秒前
细腻的海露完成签到,获得积分10
11秒前
12秒前
不秃头完成签到,获得积分10
14秒前
万信心完成签到,获得积分10
17秒前
萌新完成签到 ,获得积分10
17秒前
18秒前
缓慢的海云完成签到,获得积分10
18秒前
wrr应助苗条铅笔采纳,获得10
19秒前
卡卡罗特先森完成签到 ,获得积分10
20秒前
能干的新筠完成签到,获得积分10
20秒前
爆米花应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
流白应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
aprilvanilla应助科研通管家采纳,获得10
23秒前
zwy应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
24秒前
wanci应助科研通管家采纳,获得10
24秒前
joker_k应助科研通管家采纳,获得20
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
Raymond应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得150
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
流白应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
25秒前
25秒前
英姑应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776209
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207313
捐赠科研通 3036940
什么是DOI,文献DOI怎么找? 1666486
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757868