Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence

背景(考古学) 人工智能 医学 计算机科学 自然语言处理 机器学习 生物 古生物学
作者
Ruibin Feng,Kelly Brennan,Zahra Azizi,Jatin Goyal,Brototo Deb,Hui Ju Chang,Prasanth Ganesan,Paul Clopton,Maxime Pedron,Samuel Ruipérez-Campillo,Yaanik Desai,Hugo De Larochellière,Tina Baykaner,Marco Pérez,Rodrigo Bernardi Miguel,Albert J. Rogers,Sanjiv M. Narayan
出处
期刊:Circulation-arrhythmia and Electrophysiology [Lippincott Williams & Wilkins]
标识
DOI:10.1161/circep.124.013023
摘要

BACKGROUND: Large language models (LLMs), such as ChatGPT, excel at interpreting unstructured data from public sources, yet are limited when responding to queries on private repositories, such as electronic health records (EHRs). We hypothesized that prompt engineering could enhance the accuracy of LLMs for interpreting EHR data without requiring domain knowledge, thus expanding their utility for patients and personalized diagnostics. METHODS: We designed and systematically tested prompt engineering techniques to improve the ability of LLMs to interpret EHRs for nuanced diagnostic questions, referenced to a panel of medical experts. In 490 full-text EHR notes from 125 patients with prior life-threatening heart rhythm disorders, we asked GPT-4-turbo to identify recurrent arrhythmias distinct from prior events and tested 220 563 queries. To provide context, results were compared with rule-based natural language processing and BERT-based language models. Experiments were repeated for 2 additional LLMs. RESULTS: In an independent hold-out set of 389 notes, GPT-4-turbo had a balanced accuracy of 64.3%±4.7% out-of-the-box at baseline. This increased when asking GPT-4-turbo to provide a rationale for its answers, requiring a structured data output, and providing in-context exemplars, rose to a balanced accuracy of 91.4%±3.8% ( P <0.05). This surpassed the traditional logic-based natural language processing and BERT-based models ( P <0.05). Results were consistent for GPT-3.5-turbo and Jurassic-2 LLMs. CONCLUSIONS: The use of prompt engineering strategies enables LLMs to identify clinical end points from EHRs with an accuracy that surpassed natural language processing and approximated experts, yet without the need for expert knowledge. These approaches could be applied to LLM queries for other domains, to facilitate automated analysis of nuanced data sets with high accuracy by nonexperts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子完成签到,获得积分10
1秒前
芝麻完成签到,获得积分10
3秒前
Mrlll完成签到,获得积分10
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
揽月yue应助科研通管家采纳,获得10
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
揽月yue应助科研通管家采纳,获得10
5秒前
笙陌应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
后来应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
开放映冬完成签到,获得积分10
5秒前
弹剑作歌完成签到,获得积分10
6秒前
LV完成签到 ,获得积分10
6秒前
小伙伴完成签到,获得积分20
8秒前
9秒前
蒋若风完成签到,获得积分10
9秒前
ESC惠子子子子子完成签到 ,获得积分10
10秒前
不如看海完成签到 ,获得积分10
10秒前
77完成签到 ,获得积分10
11秒前
FrancisCho完成签到,获得积分0
11秒前
zhiwei发布了新的文献求助10
13秒前
可爱的函函应助Freud采纳,获得10
14秒前
豆子完成签到,获得积分10
17秒前
lxxy123完成签到 ,获得积分10
18秒前
GXLong完成签到,获得积分10
18秒前
星辰大海应助默listening采纳,获得10
18秒前
奋斗的大菜鸡完成签到,获得积分20
19秒前
打工不可能完成签到,获得积分10
19秒前
Chii完成签到,获得积分10
19秒前
后来给qq的求助进行了留言
19秒前
20秒前
20秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346708
关于积分的说明 10329984
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726