CMFE-PVT: A lightweight fault diagnosis framework for rolling bearings using compact multi-scale feature extraction and a pruned-restructured vision transformer

变压器 计算机科学 特征提取 断层(地质) 比例(比率) 人工智能 模式识别(心理学) 汽车工程 电气工程 工程类 地质学 物理 电压 量子力学 地震学
作者
Shanshan Ding,Weibing Wu,Xiaolu Ma,Fei Liu,Renwen Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 025015-025015 被引量:3
标识
DOI:10.1088/1361-6501/ada3ee
摘要

Abstract The intelligent fault diagnosis method based on transformer and convolutional neural network (CNN) has achieved good global and local feature extraction results. However, the multi-head self-attention mechanism adopted by the transformer and the cross-channel convolution operation in CNN increases the complexity of the model, thereby increasing the demand for hardware resources, which to some extent, limits its broad applicability in industrial applications. Therefore, this paper proposes a lightweight fault diagnosis framework based on compact multi-scale feature extraction and pruned-restructured vision transformer (ViT) to address the above challenges. Firstly, a compact multi-scale feature extraction module is designed to efficiently capture complex features in rolling bearing vibration signals through parallel multi-scale convolution kernels, combined with channel reduction strategies to significantly reduce computational complexity while maintaining feature richness. Next, short-time Fourier transform and pseudo-color processing techniques are used to obtain time–frequency images. Then, a dual optimization of matrix sparsity and structural reorganization is implemented for Self-attention in ViT to ensure model performance and significantly reduce computational overhead. Finally, the time–frequency images are segmented and rearranged before being fed into the improved lightweight ViT for global feature extraction and fault recognition of rolling bearings. The experimental results show that the proposed fault diagnosis method has the advantages of lightweight (Params:4.27 K, floating point operations per seconds:0.1 M, multiplication and accumulation operations per seconds:51.07 K) and robustness compared to mainstream algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲迎梦完成签到,获得积分10
刚刚
Akim应助科研狗采纳,获得10
刚刚
1秒前
感叹号完成签到,获得积分10
2秒前
刘书鹏完成签到,获得积分10
2秒前
lww关注了科研通微信公众号
2秒前
小李发布了新的文献求助10
2秒前
12345656656发布了新的文献求助10
2秒前
3秒前
冷傲迎梦发布了新的文献求助10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
迷你的葵阴完成签到,获得积分20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
且慢应助科研通管家采纳,获得20
4秒前
彩色的听兰完成签到 ,获得积分10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
汉堡肉应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
晞晞完成签到,获得积分20
5秒前
Vincey完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
77seven完成签到,获得积分10
6秒前
7秒前
7秒前
务实寄松发布了新的文献求助30
7秒前
7秒前
萧十一郎3913完成签到,获得积分10
7秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481783
求助须知:如何正确求助?哪些是违规求助? 4582732
关于积分的说明 14386753
捐赠科研通 4511532
什么是DOI,文献DOI怎么找? 2472396
邀请新用户注册赠送积分活动 1458660
关于科研通互助平台的介绍 1432181