Prediction of household food insecurity in rural China: an application of machine learning methods

粮食不安全 中国 经济 粮食安全 经济增长 业务 营销 人口经济学 政治学 农业 地理 考古 法学
作者
Longqiang Zhao,Minda Yang,Shi Min,Ping Qing
出处
期刊:The International Food and Agribusiness Management Review [Wageningen Academic Publishers]
卷期号:: 1-21
标识
DOI:10.22434/ifamr1137
摘要

Abstract Ensuring the accurate prediction of food insecurity among rural households is an essential prerequisite for the implementation of effective interventions aimed at mitigating the risk of household food insecurity. While machine learning has demonstrated potential in enhancing prediction the accuracy of predictions related to household food insecurity, its application remains relatively limited in predicting household food insecurity in rural China. Based on a dataset comprising 3-day food consumption records from 1080 rural households in China, calorie intake was selected as a key indicator for measuring household food insecurity. This study employed machine learning algorithms, specifically the random forest (RF) and least absolute shrinkage and selection operator regression (LASSO), alongside traditional econometric methods, to predict household food insecurity. Additionally, it compared the predictive performance of these machine learning algorithms against that of traditional econometric approaches. The result indicates that RF methods exhibited the highest performance in prediction accuracy, achieving an accuracy of up to 65.7%, closely followed by the LASSO methods. Moreover, this study identified household income, food market accessibility and availability as the most feature variables for predicting household food insecurity. Overall, this study not only demonstrates the viability of machine learning techniques in predicting household food insecurity but also offers valuable implications for preventing the occurrence of household food insecurity in rural China and other developing regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ilan完成签到,获得积分10
刚刚
兮兮完成签到,获得积分10
1秒前
mm完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
白小青发布了新的文献求助10
3秒前
kingsley完成签到,获得积分0
3秒前
lxx发布了新的文献求助10
3秒前
3秒前
4秒前
慧慧完成签到,获得积分20
4秒前
小青椒应助伶俐的谷波采纳,获得20
5秒前
肖肖发布了新的文献求助10
5秒前
6秒前
6秒前
Akim应助yy采纳,获得10
6秒前
6秒前
wdccx完成签到,获得积分10
7秒前
无情的南琴完成签到,获得积分10
8秒前
jm完成签到,获得积分10
9秒前
专注语堂发布了新的文献求助10
10秒前
小情绪应助永远55度采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
小二郎应助Aodengmei采纳,获得10
12秒前
sun完成签到,获得积分10
13秒前
彩色的夏之完成签到 ,获得积分10
13秒前
lingling完成签到,获得积分20
13秒前
风清扬发布了新的文献求助10
14秒前
15秒前
FashionBoy应助猪猪采纳,获得20
16秒前
17秒前
小唐完成签到,获得积分10
18秒前
科目三应助淡淡的飞雪采纳,获得10
19秒前
19秒前
21秒前
充电宝应助调皮的背包采纳,获得10
22秒前
千迁完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073899
求助须知:如何正确求助?哪些是违规求助? 4294034
关于积分的说明 13380250
捐赠科研通 4115419
什么是DOI,文献DOI怎么找? 2253626
邀请新用户注册赠送积分活动 1258399
关于科研通互助平台的介绍 1191234