Backdoor Attacks and Countermeasures in Natural Language Processing Models: A Comprehensive Security Review

后门 计算机科学 计算机安全 自然(考古学) 地质学 古生物学
作者
Pengzhou Cheng,Zongru Wu,Wei Du,Haodong Zhao,Wei Lu,Gongshen Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21
标识
DOI:10.1109/tnnls.2025.3540303
摘要

Language models (LMs) are becoming increasingly popular in real-world applications. Outsourcing model training and data hosting to third-party platforms has become a standard method for reducing costs. In such a situation, the attacker can manipulate the training process or data to inject a backdoor into models. Backdoor attacks are a serious threat where malicious behavior is activated when triggers are present; otherwise, the model operates normally. However, there is still no systematic and comprehensive review of LMs from the attacker's capabilities and purposes on different backdoor attack surfaces. Moreover, there is a shortage of analysis and comparison of the diverse emerging backdoor countermeasures. Therefore, this work aims to provide the natural language processing (NLP) community with a timely review of backdoor attacks and countermeasures. According to the attackers' capability and affected stage of the LMs, the attack surfaces are formalized into four categorizations: attacking the pretrained model with fine-tuning (APMF) or parameter-efficient fine-tuning (PEFT), attacking the final model with training (AFMT), and attacking large language model (ALLM). Thus, attacks under each categorization are combed. The countermeasures are categorized into two general classes: sample inspection and model inspection. Thus, we review countermeasures and analyze their advantages and disadvantages. Also, we summarize the benchmark datasets and provide comparable evaluations for representative attacks and defenses. Drawing the insights from the review, we point out the crucial areas for future research on the backdoor, especially soliciting more efficient and practical countermeasures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂花酒酿完成签到,获得积分10
1秒前
子羽完成签到,获得积分10
3秒前
Silieze完成签到,获得积分10
5秒前
luogan完成签到,获得积分10
6秒前
6秒前
爆米花应助Rewi_Zhang采纳,获得10
7秒前
7秒前
666发布了新的文献求助50
8秒前
再睡十分钟完成签到,获得积分10
8秒前
诸忆雪完成签到,获得积分10
9秒前
zly完成签到 ,获得积分10
11秒前
简单水蓉完成签到,获得积分10
12秒前
14秒前
柚子发布了新的文献求助10
14秒前
Diego完成签到,获得积分10
15秒前
15秒前
动人的怀柔完成签到,获得积分10
15秒前
winifred完成签到 ,获得积分10
16秒前
Rewi_Zhang发布了新的文献求助10
18秒前
可爱丸子完成签到,获得积分10
18秒前
漂亮的小刺猬完成签到,获得积分10
19秒前
az完成签到,获得积分10
19秒前
666完成签到,获得积分10
20秒前
rong完成签到,获得积分20
20秒前
达达发布了新的文献求助30
20秒前
粗暴的坤完成签到 ,获得积分10
21秒前
小黄完成签到 ,获得积分10
22秒前
乐乐应助666采纳,获得10
25秒前
糖糖科研顺利呀完成签到 ,获得积分10
26秒前
达达完成签到,获得积分10
28秒前
baolong完成签到,获得积分10
31秒前
落后的瑾瑜完成签到,获得积分10
31秒前
打打应助happy采纳,获得10
34秒前
LUOYAN发布了新的文献求助10
35秒前
starry完成签到,获得积分10
35秒前
xiaobai完成签到,获得积分10
36秒前
39秒前
SciGPT应助小白采纳,获得10
40秒前
42秒前
LUOYAN完成签到,获得积分20
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779378
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220406
捐赠科研通 3040087
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522