Turbulent wake dynamics and flow characteristics over typical hilly terrain: A proper orthogonal decomposition and dynamic mode decomposition analysis

动态模态分解 物理 唤醒 湍流 分解 流量(数学) 地形 模式(计算机接口) 机械 统计物理学 本征正交分解 经典力学 地理 计算机科学 生态学 地图学 生物 操作系统
作者
Weicheng Hu,Qingshan Yang,Tong Zhou,Bin Lu,Guowei Qian,Wenshan Shan,Yu Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (5)
标识
DOI:10.1063/5.0269028
摘要

The turbulent wake dynamics over hilly terrain with typical topographic shapes and slopes under different oncoming flow conditions are numerically investigated using large-eddy simulations, followed by proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) analysis. First, the effects of terrain shape, slope and inflow turbulence on the statistical and spectral characteristics of wake turbulence over hilly terrain are clarified. Then, the dominant flow patterns in the topographic wake are identified by POD and DMD, respectively. Finally, the turbulent wake flow fields over typical hilly terrain are reconstructed using DMD. The results show that the peak spectral frequencies at half topography elevation decrease as the terrain shape transitions from three-dimensional to two-dimensional but increase with decreasing terrain slope and oncoming turbulence intensity. From POD and DMD analyses, it is demonstrated that the wake dynamics over steep terrain under turbulent inflow conditions are predominantly governed by the separated shear layer shed from the hillside and hilltop on the horizontal and vertical planes, respectively. Some discrepancies are observed in the higher-order modes extracted from POD and DMD, indicating strong interactions among multi-frequency eddy motions in the topographic wake. Moreover, the wake fields over typical hilly terrain under different incoming flow conditions can be effectively reconstructed using only 30% of DMD modes with reasonable accuracy. The reconstruction errors are primarily concentrated within the separated shear layer due to the strong flow nonlinearity in this region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净的白曼完成签到 ,获得积分10
2秒前
2秒前
campus发布了新的文献求助10
4秒前
5秒前
9秒前
10秒前
专注的皮皮虾完成签到 ,获得积分10
11秒前
15秒前
爆米花应助殷少华采纳,获得10
15秒前
3dyf发布了新的文献求助10
15秒前
123321完成签到,获得积分10
15秒前
呆瓜完成签到,获得积分10
16秒前
DajeVn完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
DNAdamage发布了新的文献求助10
19秒前
Billy发布了新的文献求助10
20秒前
小橙子完成签到 ,获得积分10
21秒前
21秒前
小蘑菇应助太胖了你采纳,获得30
21秒前
22秒前
小嚣张发布了新的文献求助10
23秒前
情怀应助shellyAPTX4869采纳,获得10
24秒前
25秒前
领导范儿应助小陈采纳,获得10
25秒前
没出门完成签到,获得积分10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
英姑应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
orixero应助科研通管家采纳,获得10
26秒前
饱满的鑫应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3860953
求助须知:如何正确求助?哪些是违规求助? 3403283
关于积分的说明 10634470
捐赠科研通 3126435
什么是DOI,文献DOI怎么找? 1723995
邀请新用户注册赠送积分活动 830286
科研通“疑难数据库(出版商)”最低求助积分说明 779032