Machine Learning Model to Guide Empirical Antimicrobial Therapy in Febrile Neutropenic Patients With Hematologic Malignancies

发热性中性粒细胞减少症 医学 抗菌剂 血液肿瘤 重症监护医学 中性粒细胞减少症 癌症 内科学 化疗 微生物学 生物
作者
Kosuke Hoashi,Kazuhide Matsumoto,Junichi Kiyasu,Takuya Sawabe,Oyama Makoto,Mariko Tsuda,Akiko Takamatsu,Eriko Fujioka,Yuji Yufu,Motoaki Shiratsuchi,Kenta Murotani
出处
期刊:Anticancer Research [International Institute of Anticancer Research (IIAR) Conferences 1997. Athens, Greece. Abstracts]
卷期号:45 (6): 2629-2642
标识
DOI:10.21873/anticanres.17634
摘要

Optimal antimicrobial selection for patients with febrile neutropenia (FN) may differ depending on the underlying mechanisms. We aimed to develop a model for predicting the severity of bacteremia in patients with FN and hematologic malignancies (HMs) to help clinicians select appropriate antimicrobials using a machine-learning approach. In this single-center retrospective study, we analyzed the characteristics and microbial epidemiology of patients with FN and HMs who developed bacteremia. We applied a machine learning approach (least absolute shrinkage selection operator) to select the variables and then created a risk score. Using the risk score, a model was constructed that enabled us to estimate the probability of developing severe complications when a narrow- [cefepime (CEM)] or broad-spectrum [either piperacillin-tazobactam or meropenem (PT+MEM)] antimicrobial agent was administered. In total, 228 patients were enrolled. Of these, a microbiological cohort (n=126) and an analysis cohort (n=88) were established. In the microbiological cohort, coagulase-negative staphylococci (20.6%) were the most common pathogens, and antimicrobial resistance mechanisms were identified in 53 isolates (42.1%). In the analysis cohort, CEM and PT+MEM were administered to 53 (60.2%) and 35 (39.8%) patients, respectively. The overall incidence of severe complications was 26.1%. The performance of the machine learning model was measured by the area under the receiver operating characteristic curve (AUC) (AUC=0.813; 95% confidence interval=0.691-0.894), which showed good discrimination. This pilot study introduces a novel method for constructing predictive models tailored to specific patient groups, potentially supporting antimicrobial stewardship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠月亮发布了新的文献求助10
2秒前
yu完成签到,获得积分10
2秒前
2秒前
Zoeee发布了新的文献求助10
3秒前
李健应助dali采纳,获得10
3秒前
小陀螺发布了新的文献求助10
3秒前
5秒前
8秒前
8秒前
木子梨狸完成签到,获得积分10
9秒前
TIANNANXING发布了新的文献求助30
10秒前
11秒前
12秒前
紧张的朋友完成签到,获得积分10
12秒前
善学以致用应助翟布丁采纳,获得10
13秒前
dali发布了新的文献求助10
14秒前
14秒前
tongttt发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
翻斗花园爆破手小胡完成签到,获得积分10
16秒前
天天快乐应助jsxxdr采纳,获得10
18秒前
谦让白凡发布了新的文献求助10
19秒前
20秒前
tunerling完成签到,获得积分10
20秒前
whb完成签到,获得积分10
21秒前
liuyiduo发布了新的文献求助10
21秒前
瓜瓜发布了新的文献求助10
22秒前
dali完成签到,获得积分20
23秒前
鱼咬羊发布了新的文献求助10
25秒前
李爱国应助152采纳,获得10
27秒前
研友_n2KQ2Z完成签到,获得积分10
27秒前
27秒前
火柴发布了新的文献求助50
32秒前
32秒前
白糖完成签到,获得积分10
33秒前
33秒前
好好完成签到,获得积分10
34秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3526007
关于积分的说明 11229870
捐赠科研通 3263850
什么是DOI,文献DOI怎么找? 1801703
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767