A generalised vision transformer-based self-supervised model for diagnosing and grading prostate cancer using histological images

医学 前列腺癌 人工智能 前列腺 分级(工程) 组织微阵列 分类器(UML) 病理 模式识别(心理学) 计算机科学 癌症 内科学 免疫组织化学 土木工程 工程类
作者
Abadh K. Chaurasia,H Harris,Patrick W Toohey,Alex W. Hewitt
出处
期刊:Prostate Cancer and Prostatic Diseases [Springer Nature]
被引量:4
标识
DOI:10.1038/s41391-025-00957-w
摘要

Abstract Background Gleason grading remains the gold standard for prostate cancer histological classification and prognosis, yet its subjectivity leads to grade variability between pathologists, potentially impacting clinical decision-making. Herein, we trained and validated a generalised AI-driven system for diagnosing prostate cancer using diverse datasets from tissue microarray (TMA) core and whole slide images (WSIs) with Haematoxylin and Eosin staining. Methods We analysed eight prostate cancer datasets, which included 12,711 histological images from 3648 patients, incorporating TMA core images and WSIs. The Macenko method was used to normalise colours for consistency across diverse images. Subsequently, we trained a multi-resolution (5x, 10x, 20x, and 40x) binary classifier to identify benign and malignant tissue. We then implemented a multi-class classifier for Gleason patterns (GP) sub-categorisation from malignant tissue. Finally, the models were externally validated on 11,132 histology images from 2176 patients to determine the International Society of Urological Pathology (ISUP) grade. Models were assessed using various classification metrics, and the agreement between the model’s predictions and the ground truth was quantified using the quadratic weighted Cohen’s Kappa ( κ ) score. Results Our multi-resolution binary classifier demonstrated robust performance in distinguishing malignant from benign tissue with κ scores of 0.967 on internal validation. The model achieved κ scores ranging from 0.876 to 0.995 across four unseen testing datasets. The multi-class classifier also distinguished GP3, GP4, and GPs with an overall κ score of 0.841. This model was further tested across four datasets, obtaining κ scores ranging from 0.774 to 0.888. The models’ performance was compared against an independent pathologist’s annotation on an external dataset, achieving a κ score of 0.752 for four classes. Conclusion The self-supervised ViT-based model effectively diagnoses and grades prostate cancer using histological images, distinguishing benign and malignant tissues and classifying malignancies by aggressiveness. External validation highlights its robustness and clinical applicability in digital pathology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助年轻的烨华采纳,获得10
刚刚
1秒前
2秒前
美好眼神完成签到,获得积分10
2秒前
xiao发布了新的文献求助10
2秒前
cute伊完成签到,获得积分10
3秒前
小兵发布了新的文献求助10
6秒前
lqqq完成签到 ,获得积分10
6秒前
hyy发布了新的文献求助10
7秒前
8秒前
9秒前
shi完成签到,获得积分10
9秒前
超帅的萤完成签到,获得积分10
9秒前
10秒前
春风不渡人间完成签到,获得积分10
10秒前
fagnxiao完成签到 ,获得积分10
10秒前
11秒前
13秒前
情怀应助陆程文采纳,获得10
14秒前
小杨同学发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
炙热萝发布了新的文献求助10
16秒前
CC完成签到 ,获得积分10
18秒前
黎书禾发布了新的文献求助10
19秒前
fagnxiao关注了科研通微信公众号
19秒前
灰色白面鸮完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
23秒前
炙热萝完成签到,获得积分10
23秒前
年轻的烨华完成签到,获得积分10
23秒前
23秒前
23秒前
Juli完成签到,获得积分10
24秒前
26秒前
26秒前
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342779
求助须知:如何正确求助?哪些是违规求助? 4478561
关于积分的说明 13939896
捐赠科研通 4375342
什么是DOI,文献DOI怎么找? 2404032
邀请新用户注册赠送积分活动 1396599
关于科研通互助平台的介绍 1368867