生物信息学
计算生物学
药物发现
药物重新定位
系统生物学
疾病
药物开发
转录组
生物
药品
计算机科学
生物信息学
神经科学
医学
药理学
病理
遗传学
基因
基因表达
作者
Yumin Zheng,Jonas C. Schupp,Taylor Adams,Gérémy Clair,A. Justet,Farida Ahangari,Xiting Yan,Paul Hansen,Marianne Carlon,Emanuela Elsa Cortesi,Marie Vermant,Robin Vos,Laurens De Sadeleer,Iván O. Rosas,Ricardo Pineda,John Sembrat,Mélanie Königshoff,John E. McDonough,Bart Vanaudenaerde,Wim Wuyts
标识
DOI:10.1038/s41551-025-01423-7
摘要
Abstract Human diseases are characterized by intricate cellular dynamics. Single-cell transcriptomics provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in silico drug interventions. Here we introduce UNAGI, a deep generative neural network tailored to analyse time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modelling and screening. When applied to a dataset from patients with idiopathic pulmonary fibrosis, UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation using proteomics reveals the accuracy of UNAGI’s cellular dynamics analysis, and the use of the fibrotic cocktail-treated human precision-cut lung slices confirms UNAGI’s predictions that nifedipine, an antihypertensive drug, may have anti-fibrotic effects on human tissues. UNAGI’s versatility extends to other diseases, including COVID, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond idiopathic pulmonary fibrosis, amplifying its use in the quest for therapeutic solutions across diverse pathological landscapes.
科研通智能强力驱动
Strongly Powered by AbleSci AI