亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnostic accuracy and quality of artificial intelligence models in irritable bowel syndrome: A systematic review

肠易激综合征 医学 心理学 胃肠病学
作者
Akshaya Srikanth Bhagavathula,Ahmed Mourtada Al Qady,Wafa Ali Aldhaleei
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:31 (23) 被引量:1
标识
DOI:10.3748/wjg.v31.i23.106836
摘要

Irritable bowel syndrome (IBS) affects approximately 9%-12% of the global population, presenting substantial diagnostic challenges due to symptom subjectivity and lack of definitive biomarkers. To systematically examine the diagnostic accuracy of artificial intelligence (AI) models applied to various biomarkers in IBS diagnosis. A comprehensive search of six databases identified 18053 articles published up to May 31, 2024. Following screening and eligibility criteria, six observational studies involving 1366 participants from the United Kingdom, China, and Japan were included. Risk of bias and reporting quality were assessed using quality assessment of diagnostic accuracy studies-2, prediction model risk of bias assessment tool-AI, and transparent reporting of a multivariable prediction model for individual prognosis or diagnosis-AI tools. Key metrics included sensitivity, specificity, accuracy, and area under the curve (AUC). The included studies applied AI models such as random forests, support vector machines, and neural networks to biomarkers like fecal microbiome composition, gas chromatography data, neuroimaging features, and protease activity. Diagnostic accuracy ranged from 54% to 98% (AUC: 0.61-0.99). Models using fecal microbiome data achieved the highest performance, with one study reporting 98% sensitivity and specificity (AUC = 0.99). While most studies demonstrated high methodological quality, significant variability in datasets, biomarkers, and validation methods limited meta-analysis feasibility and generalizability. AI models show potential to improve IBS diagnostic accuracy by integrating complex biomarkers which will aid the development of algorithms to direct treatment strategies. However, methodological inconsistencies and limited population diversity underscore the need for standardized protocols and external validation to ensure clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助sho采纳,获得30
2秒前
馆长应助sho采纳,获得30
12秒前
Wong完成签到,获得积分10
31秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
馆长应助sho采纳,获得30
46秒前
馆长应助sho采纳,获得30
1分钟前
繁觅完成签到,获得积分10
2分钟前
sho完成签到,获得积分10
3分钟前
馆长应助sho采纳,获得30
3分钟前
脑洞疼应助cloud采纳,获得10
3分钟前
4分钟前
cloud发布了新的文献求助10
4分钟前
馆长应助sho采纳,获得30
4分钟前
cloud完成签到,获得积分10
4分钟前
4分钟前
krajicek完成签到,获得积分10
4分钟前
4分钟前
5分钟前
落落完成签到 ,获得积分0
5分钟前
5分钟前
雨jia发布了新的文献求助10
5分钟前
独特的追命应助雨jia采纳,获得10
5分钟前
牛八先生完成签到,获得积分10
5分钟前
Jasper应助微笑的天德采纳,获得10
6分钟前
6分钟前
enternow完成签到 ,获得积分10
6分钟前
8分钟前
8分钟前
华仔应助科研通管家采纳,获得10
8分钟前
Leedesweet完成签到 ,获得积分10
9分钟前
9分钟前
bo完成签到 ,获得积分10
10分钟前
10分钟前
bluesmile完成签到,获得积分10
10分钟前
11分钟前
KSDalton发布了新的文献求助10
11分钟前
11分钟前
傲娇老五发布了新的文献求助10
11分钟前
12分钟前
KSDalton发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4773733
求助须知:如何正确求助?哪些是违规求助? 4107138
关于积分的说明 12704556
捐赠科研通 3827543
什么是DOI,文献DOI怎么找? 2111668
邀请新用户注册赠送积分活动 1135662
关于科研通互助平台的介绍 1018711