光致发光
荧光粉
材料科学
量子产额
兴奋剂
吸收(声学)
离子
分析化学(期刊)
量子效率
发光
吸收光谱法
光电子学
物理
光学
荧光
化学
色谱法
量子力学
复合材料
作者
Wendong Nie,Sisi Liang,Dejian Chen,Jie Hu,Zihao Wang,Zixin Pan,Hongyi Yang,Fulin Lin,Xiaodong Yi,Haomiao Zhu
标识
DOI:10.1021/acsami.5c08213
摘要
Ni2+-doped inorganic crystals are promising for generating broadband emissions from 1000 to 1700 nm, which are crucial for advancing NIR light sources. However, their commercial applications have been hindered due to their weak absorption. Herein, the LiAl5O8 crystal is present as the host for Cr3+ and Ni2+ ions due to its high density of available doping sites (Al3+) per unit volume (0.048/Å3) for Cr3+ sensitizers. By heavily increasing the doping concentration of Cr3+, an unprecedented broad emission band peaking at 773 nm emerges, enhancing the spectral overlap between the emission of Cr3+ and absorption of Ni2+, thus boosting the energy transfer efficiency from Cr3+ to Ni2+. This accelerated energy transfer rate competes favorably against nonradiative processes, allowing higher concentrations of Cr3+ without any photoluminescence quenching. Moreover, by substituting Ga3+ for Al3+, the excitation peak is successfully tuned from 405 to 445 nm, aligning perfectly with commercial blue diode chips. As a result, the optimal LiAlGa4O8: 0.26Cr3+, 0.1Ni2+ phosphor exhibits a broadband emission ranging from 950 to 1600 nm, achieving internal/external photoluminescence quantum yields up to 94.12 and 72.62%, respectively. The application demonstration of packaged lighting devices shows its great potential in the fields of poultry farming and life science.
科研通智能强力驱动
Strongly Powered by AbleSci AI