Multigranularity Information Fused Contrastive Learning With Multiview Clustering

聚类分析 计算机科学 人工智能 计算机视觉 自然语言处理
作者
Hengrong Ju,Lu Yang,Weiping Ding,Wei Zhang,Xibei Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3574885
摘要

Contrastive multiview clustering (MVC) has emerged as a mainstream approach in MVC due to its superior representation learning capabilities. Traditional contrastive multiview learning methods extract both low- and high-level information from raw data. However, only high-level information is utilized for clustering. Since both types of information are essential for effective clustering, this limitation hampers performance. Moreover, effectively quantifying the importance of different views remains a critical challenge in contrastive MVC. Additionally, the absence of structural information during clustering further weakens clustering performance. To address these issues, this article proposes a multigranularity (MG) information fused contrastive learning with MVC (MGCMVC). Inspired by the concept of MG, low- and high-level features are reconstructed into fine- and coarse-granularity features. First, an MG adaptive weighting sample-level contrastive learning mechanism is introduced to fuse MG features to enhance clustering performance and mitigate clustering performance degradation caused by variations in view quality. Second, a structure-oriented cluster-level contrastive learning approach is designed to preserve structural information and enforce cross-view clustering consistency. Extensive and comprehensive experiments on ten widely used datasets demonstrate that MGCMVC achieves the state-of-the-art performance. The source code is available at https://github.com/Luyangabc/MGCMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ted完成签到,获得积分10
1秒前
慕青应助高点点采纳,获得10
2秒前
李健应助Jackson_Cheng采纳,获得50
2秒前
温暖发布了新的文献求助10
2秒前
4秒前
跳跃的千亦关注了科研通微信公众号
4秒前
木炭应助Charlie采纳,获得20
6秒前
飞飞完成签到,获得积分20
7秒前
8秒前
8秒前
Atari完成签到,获得积分10
9秒前
天天快乐应助Jj采纳,获得10
9秒前
Miyya完成签到 ,获得积分10
9秒前
imgreen_404关注了科研通微信公众号
10秒前
10秒前
周全发布了新的文献求助10
11秒前
11秒前
lgx完成签到,获得积分10
12秒前
Nzoth发布了新的文献求助10
13秒前
14秒前
Ferry完成签到 ,获得积分10
15秒前
16秒前
16秒前
18秒前
1699Z发布了新的文献求助10
19秒前
19秒前
余空完成签到,获得积分10
19秒前
大个应助飞飞采纳,获得10
19秒前
20秒前
20秒前
英姑应助chen采纳,获得10
21秒前
小橙子发布了新的文献求助10
21秒前
Jj发布了新的文献求助10
21秒前
科研通AI2S应助aaaaa采纳,获得10
22秒前
23秒前
LINF完成签到,获得积分10
24秒前
leezhen完成签到,获得积分10
24秒前
24秒前
高点点发布了新的文献求助10
24秒前
执着俊驰发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942380
求助须知:如何正确求助?哪些是违规求助? 3487660
关于积分的说明 11044606
捐赠科研通 3218059
什么是DOI,文献DOI怎么找? 1778748
邀请新用户注册赠送积分活动 864413
科研通“疑难数据库(出版商)”最低求助积分说明 799438