Remaining Useful Life Prediction of Bearings via Semi-Supervised Transfer Learning Based on an Anti-Self-Healing Health Indicator

学习迁移 机器学习 人工智能 计算机科学 自愈 工程类 医学 病理 替代医学
作者
Jungwoo Kim,Kyoung‐Su Park
出处
期刊:Sensors [MDPI AG]
卷期号:25 (12): 3662-3662 被引量:1
标识
DOI:10.3390/s25123662
摘要

Remaining useful life (RUL) estimation of a bearing is a methodology to monitor rolling bearings for a system’s performance and reliability. It predicts the exact residual time without operational interruptions until complete bearing failure by training a deep learning model to predict the remaining time of working using extracted signal features. Extracting features is one of the most important subjects since its quality directly influences the performance of predicting RUL. Features should gradually and consistently increase over time and capture sudden deterioration within normalized specific thresholds. However, recent studies have not addressed feature extraction methods that consider all of these aspects. Moreover, some bearings exhibit a “self-healing” phenomenon, in which bearing conditions appear to temporarily improve, and this complicates the accurate representation of consistent performance degradation. However, very few studies have properly addressed this issue. Meanwhile, transfer learning is frequently used when training the RUL deep learning model because there is a lack of data for run-to-failure experiments. Most RUL estimation methodologies pre-train and apply deep learning models with supervised learning. But supervised transfer learning supposes that researchers already have access to end-of-life (EOL) data—often unavailable in industrial settings—limiting their practicality. To address these challenges, this paper proposes a novel semi-supervised transfer learning methodology that integrates an anti-self-healing health indicator (ASH-HI) with a transformer-based architecture. ASH-HI is a health indicator that quantifies the power spectrum density (PSD) difference between normal and abnormal states using skewness-based parameter selection, eliminating the need for manual parameter tuning. Also, it overcomes the self-healing problem by measuring the difference not only between normal and abnormal states but also between “correction” and abnormal states. Also, this paper presents a new semi-supervised transfer learning method without EOL information. The proposed methodology is validated using the PHM 2012, NASA IMS, and an experimental setup. This study is the first to attempt transfer learning using more than three datasets simultaneously, resulting in significantly improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
科目三应助yuhan采纳,获得10
4秒前
qfk发布了新的文献求助30
5秒前
苹果亦巧发布了新的文献求助10
6秒前
曾经的听云完成签到 ,获得积分10
7秒前
sxh完成签到,获得积分10
8秒前
9秒前
陈小瑜完成签到,获得积分10
9秒前
冰冰完成签到,获得积分10
10秒前
10秒前
共享精神应助夹谷蕈采纳,获得10
11秒前
有求必_应完成签到,获得积分10
13秒前
彭于晏应助www采纳,获得10
14秒前
yuhan发布了新的文献求助10
15秒前
酷波er应助DC采纳,获得10
17秒前
英俊的铭应助kk采纳,获得10
20秒前
饼饼完成签到,获得积分10
20秒前
20秒前
21秒前
NexusExplorer应助现代代桃采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
Hello应助不解其中味采纳,获得10
23秒前
英姑应助云上人采纳,获得10
23秒前
田様应助有求必_应采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
太阳发布了新的文献求助10
25秒前
26秒前
Orange应助自然的翠容采纳,获得10
26秒前
26秒前
28秒前
nessa完成签到,获得积分10
28秒前
28秒前
xrl完成签到 ,获得积分10
29秒前
30秒前
31秒前
31秒前
那会是永远完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713487
求助须知:如何正确求助?哪些是违规求助? 5215699
关于积分的说明 15270963
捐赠科研通 4865238
什么是DOI,文献DOI怎么找? 2611937
邀请新用户注册赠送积分活动 1562134
关于科研通互助平台的介绍 1519378