Dehaze-RetinexGAN: Real-World Image Dehazing via Retinex-based Generative Adversarial Network

对抗制 人工智能 计算机科学 图像(数学) 生成语法 生成对抗网络 计算机视觉
作者
Xinran Wang,Yang Guang,Ye Tian,Yun Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (8): 7997-8005 被引量:2
标识
DOI:10.1609/aaai.v39i8.32862
摘要

Deep learning based dehazing networks trained on paired synthetic data have shown impressive performance, but they struggle with significant degradation in generalization ability on real-world hazy scenes. In this paper, we propose Dehaze-RetinexGAN, a lightweight Retinex-based Generative Adversarial Network for real-world image Dehazing using unpaired data. Our Dehaze-RetinexGAN consists of two stages: self-supervised pre-training and weakly-supervised fine-tuning. During the pre-training, we reduce the image dehazing task to an illumination-reflectance decomposition task based on the duality correlation between Retinex and dehazing. Specifically, a decomposition network named DecomNet is constructed to obtain an illumination and a reflectance, simultaneously. Moreover, a self-supervised learning strategy is developed to construct the connection between the preliminary dehazed result and the input hazy image, which constrains the solution space of DecomNet and accelerates training, leading to a more realistic dehazed result. In the fine-tuning stage, we develop a dual DTCWT-based attention module and embed it into the U-Net architecture to further improve the quality of preliminary result in the frequency domain. In addition, the adversarial learning is employed to constrain the relevance between the clean image and the final dehazed result in a weakly supervised manner, which can promote more natural performance. Extensive experiments on several real-world datasets demonstrate that our proposed framework performs favorably over state-of-the-art dehazing methods in visual quality and quantitative evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然凌兰发布了新的文献求助10
刚刚
1秒前
1秒前
wakaka12138完成签到 ,获得积分10
1秒前
1秒前
云飞完成签到,获得积分10
1秒前
寒冷的沛珊完成签到 ,获得积分10
4秒前
tangcl发布了新的文献求助10
4秒前
4秒前
5秒前
先生范完成签到,获得积分10
5秒前
大个应助蓝秋采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
EDTA完成签到 ,获得积分10
6秒前
6秒前
6秒前
豆浆油条发布了新的文献求助30
6秒前
yzy发布了新的文献求助10
10秒前
Lucas应助tangcl采纳,获得10
11秒前
武婧关注了科研通微信公众号
11秒前
慕青应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
LaTeXer应助科研通管家采纳,获得30
13秒前
小远远应助科研通管家采纳,获得20
13秒前
烟花应助诚心忆曼采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得20
14秒前
lilili应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
LaTeXer应助科研通管家采纳,获得30
14秒前
LaTeXer应助科研通管家采纳,获得30
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5041161
求助须知:如何正确求助?哪些是违规求助? 4272167
关于积分的说明 13319795
捐赠科研通 4084419
什么是DOI,文献DOI怎么找? 2234668
邀请新用户注册赠送积分活动 1242198
关于科研通互助平台的介绍 1168942