上睑下垂
软骨细胞
下调和上调
骨关节炎
细胞生物学
内部收益率1
生物
医学
癌症研究
化学
生物信息学
细胞凋亡
基因
软骨
基因表达
遗传学
程序性细胞死亡
解剖
病理
替代医学
作者
Shang Ma,Peng Yu,Jinxin Ma,Kangnan Liu,Mi Wang,Pengbo Shi,Nguyen Duy Tuyen Duong,Shao Cheng,Shangzeng Wang
标识
DOI:10.1016/j.intimp.2025.114460
摘要
Osteoarthritis (OA) is the most common degenerative joint disease worldwide. Studies have confirmed that pyroptosis is closely associated with the OA onset and progression, particularly via the classical pathway mediated by the NLRP3 inflammasome. However, the intrinsic regulatory mechanisms underlying pyroptosis in OA remain unclear. We conducted RNA sequencing (RNA-seq) analysis on clinical cartilage samples and identified hub genes connecting OA and pyroptosis. We validated NLRP3-mediated pyroptosis activation, evaluated the diagnostic potential of the hub gene, and explored its regulatory role using a papain-induced rabbit OA model and IL-1β-induced chondrocytes. Subsequently, we constructed a competitive endogenous RNA (ceRNA) network based on the hub gene and validated its competitive binding interactions and regulatory function in NLRP3-mediated pyroptosis. Additionally, hub gene interferon regulatory factor 1 (IRF1) serves as a recognized upstream regulator of the novel cell death paradigm PANoptosis, which integrates apoptosis, necrosis, and pyroptosis. We preliminarily explored the potential molecular mechanisms of PANoptosis in OA through clinical sample analysis and in vitro experiments. RNA-seq revealed that IRF1, a hub gene linking OA and pyroptosis, is upregulated in OA cartilage and is associated with NLRP3, consistent with the in vivo and in vitro results. Dual-luciferase assays, clinical sample analysis, and in vitro experiments confirmed the competitive binding of the embigin pseudogene 1 (EMBP1)/miR-454-3p/IRF1 ceRNA network. Silencing EMBP1 increased miR-454-3p, inhibiting IRF1 and NLRP3-mediated pyroptosis in vitro; however, miR-454-3p inhibitor rescue experiments abolished the beneficial effects of si-EMBP1. Furthermore, we preliminarily characterized the occurrence of PANoptosis in OA and provided initial evidence suggesting a potential regulatory role for the EMBP1/miR-454-3p/IRF1 axis in this process. In OA, EMBP1 acts as a sponge for miR-454-3p, inhibiting its negative regulatory effect on IRF1 and exacerbating NLRP3-mediated chondrocyte pyroptosis. Furthermore, EMBP1/miR-454-3p/IRF1-mediated pyroptosis may be integrated into the broader PANoptosis process, interacting with apoptosis and necrosis to influence OA progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI