Generative deep learning pipeline yields potent Gram-negative antibiotics

抗生素 管道(软件) 生成语法 人工智能 微生物学 计算机科学 生物 细菌 遗传学 程序设计语言
作者
Martin F. Köllen,Maximilian G. Schuh,R Kretschmer,Junhong Chen,A. Waite Bohne,Dominik P. Halter,Stephan A. Sieber
标识
DOI:10.26434/chemrxiv-2025-s418c
摘要

The escalating crisis of multiresistant bacteria demands the rapid discovery of novel antibiotics that transcend the limitations imposed by the biased chemical space of current libraries. To address this challenge, we introduce an innovative deep learning- driven pipeline for de novo antibiotic design. This unique approach leverages a chemical language model, trained on a diverse chemical space encompassing drug-like molecules and natural products, coupled with transfer learning on diverse antibiotic scaffolds to efficiently generate structurally unprecedented antibiotic candidates. Through the use of predictive modeling and expert curation, we prioritized and synthesized the most promising and readily available candidates. Notably, our efforts culminated in a lead candidate demonstrating potent activity against methicillin-resistant Staphylococcus aureus. Iterative refinement through automated synthesis of 40 derivatives yielded a suite of active compounds, including 30 with activity against S. aureus and 17 against Escherichia coli. Among these, lead compound D8 exhibited remarkable submicromolar and single-digit micromolar potency against the aforementioned pathogens, respectively. Mechanistic investigations point to the generation of radical species as its primary mode of action. This work showcases the power of our innovative deep learning framework to significantly accelerate and expand the horizons of antibiotic drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助jj158采纳,获得10
刚刚
小陈发布了新的文献求助10
1秒前
1秒前
甘楽发布了新的文献求助10
1秒前
Akim应助乐观的星月采纳,获得10
3秒前
wuli发布了新的文献求助10
3秒前
充电宝应助暴躁的香氛采纳,获得30
4秒前
5秒前
娃哈哈发布了新的文献求助10
6秒前
安雯完成签到 ,获得积分20
7秒前
Colin发布了新的文献求助20
8秒前
怡然犀牛完成签到 ,获得积分10
8秒前
善学以致用应助jj158采纳,获得30
9秒前
共享精神应助馒头酶采纳,获得10
9秒前
Orange应助娃哈哈采纳,获得10
10秒前
所所应助小陈采纳,获得10
11秒前
11秒前
qiao应助追寻飞风采纳,获得10
11秒前
14秒前
科研通AI5应助wuli采纳,获得10
15秒前
领导范儿应助art6886采纳,获得10
15秒前
Draymond完成签到 ,获得积分10
16秒前
锋锋发布了新的文献求助10
16秒前
爆米花应助李浩采纳,获得10
17秒前
xxddw发布了新的文献求助10
18秒前
科研通AI5应助YJ采纳,获得10
18秒前
jenningseastera应助努力采纳,获得10
18秒前
神勇访蕊发布了新的文献求助10
18秒前
18秒前
所所应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得50
19秒前
烟花应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781693
求助须知:如何正确求助?哪些是违规求助? 3327300
关于积分的说明 10230275
捐赠科研通 3042139
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792