清脆的
基因组编辑
遗传增强
疾病
基因组
生物
基因
癌症
计算生物学
遗传学
医学
内科学
作者
S. L. Zang,Ruirui Zhang,Jian Zhang,Xi Zhang,Jun Li
摘要
The advent of genome-editing technologies, particularly the RNA-guided the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) 9, which originates from prokaryotic CRISPR/Cas adaptive immune mechanisms, has revolutionized molecular biology. Renowned for its simplicity, cost-effectiveness, and capacity for multiplexed gene editing, CRISPR/Cas9 has emerged as the most versatile and widely adopted genome-editing platform. Its applications span fundamental research, biotechnology, medicine, and therapeutics. This review highlights recent advancements in CRISPR-based technologies, focusing on CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas12f. It emphasizes precision editing methods like base editing and prime editing, which enable targeted nucleotide changes without double-strand breaks. The specificity of these tools, including on-target accuracy and off-target risks, is critically evaluated. Additionally, recent preclinical and clinical efforts to treat diseases such as cancer and sickle cell disease using CRISPR are summarized. Finally, the challenges and future directions of CRISPR-mediated gene therapy are discussed, emphasizing its potential to integrate with other molecular approaches to address unmet medical needs.
科研通智能强力驱动
Strongly Powered by AbleSci AI