AI in Hypertensive Disorders of Pregnancy: Review

医学 妊娠高血压 检查表 逻辑回归 怀孕 子痫 数据提取 子痫前期 梅德林 产科 内科学 遗传学 生物 心理学 政治学 法学 认知心理学
作者
Ruben Zapata,Tioluwani Tolani,Richard R. Reich,Sophie Beneteau,Hussein M. Ali,Tamara N. Kolli,Michaela Rechdan,L. Brinkley,Michele Himadi,Adetola Louis‐Jacques,François Modave,Steven M. Smith,Tony Wen,Elizabeth Shenkman,Dominick J. Lemas
出处
期刊:American Journal of Hypertension [Oxford University Press]
标识
DOI:10.1093/ajh/hpaf052
摘要

Abstract Background Hypertensive disorders of pregnancy (HDP) are a leading cause of maternal and fetal mortality worldwide. Early detection and risk stratification are critical for timely intervention to prevent severe complications such as eclampsia, stroke, and preterm delivery. However, traditional clinical methods often lack the precision needed to identify high-risk individuals effectively. Machine learning (ML) has emerged as a powerful tool, leveraging complex data to enhance prediction, diagnosis, and clinical decision-making in HDP. This review aims to systematically evaluate ML applications in HDP, highlighting trends, methodologies, and gaps to guide future research and improve maternal and fetal outcomes. Methods This study adheres to the PRISMA-ScR guidelines for scoping reviews, focusing on full-text, English-language publications that apply ML models to HDP. A comprehensive search across three databases captured studies involving at-risk patient populations. Data extraction followed the CHARMS checklist, summarizing study characteristics, outcomes, and ML methodologies, while also identifying gaps and opportunities for further research. Results Most studies targeted preeclampsia (n=70, 75.27%), with limited focus on other HDP phenotypes such as gestational hypertension (n=4, 4.3%) and postpartum hypertension (n=1, 1.07%). Sample sizes ranged from 20 to over 700,000 participants. Studies have been increasing since 2014 emphasizing diagnosis/onset detection (n=58, 62.37%) and risk prediction (n=26, 27.95%). Random Forest, Logistic Regression, Decision Trees, and SVM were the most common ML methods. Geographic analysis revealed concentration in China (n=29, 31.18%) and North America (n=18, 19.35%), with underrepresentation in other regions. Input data predominantly comprised demographics (n=50, 53.76%), patient/family history (n=43, 46.24%), and functional tests (n=43, 46.24%), whereas omics (n=29, 31.18%) and imaging data (n=2, 2.15%) were infrequently used. Outcomes related to time-to-intervenes and readmission were each reported once. Conclusions Machine learning is increasingly applied to HDP, with significant growth in diagnostic and risk prediction models. However, geographic disparities, limited phenotype representation, and models to help intervene at critical time points throughout the perinatal lifecycle remain barriers. Notably, models addressing time-to-intervene predictions and hospital readmissions are underrepresented, highlighting critical gaps in the current literature. Addressing these limitations—by developing models to help improve the timing of medical interventions, higher risk profiling, and diverse datasets—can advance ML's role in improving maternal and fetal outcomes and reducing mortality globally. Future research should focus on refining ML models to support clinicians and advance care for patients with HDP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loin完成签到,获得积分10
刚刚
yiyi131完成签到,获得积分10
1秒前
BETCHA完成签到,获得积分10
2秒前
晴朗完成签到,获得积分10
2秒前
3秒前
lucky完成签到,获得积分10
4秒前
4秒前
4秒前
yufeng完成签到 ,获得积分10
5秒前
西门明雪完成签到,获得积分10
5秒前
happyboy2008完成签到,获得积分10
5秒前
6秒前
黑黑黑完成签到,获得积分0
6秒前
隐形曼青应助蔺山河采纳,获得10
7秒前
8秒前
一一2完成签到,获得积分10
8秒前
Ytion发布了新的文献求助10
9秒前
科研牛马完成签到,获得积分10
10秒前
zone发布了新的文献求助10
10秒前
sunnyyc完成签到,获得积分10
11秒前
QWE完成签到,获得积分10
11秒前
脂蛋白抗原完成签到,获得积分10
11秒前
lsh2发布了新的文献求助10
12秒前
成就映秋完成签到,获得积分10
13秒前
13秒前
四喜格格完成签到,获得积分10
13秒前
14秒前
村口的帅老头完成签到 ,获得积分10
14秒前
TvT发布了新的文献求助10
14秒前
机智的宝贝完成签到,获得积分10
14秒前
15秒前
WittingGU完成签到,获得积分0
15秒前
爱笑孤容完成签到,获得积分10
15秒前
16秒前
朱z完成签到,获得积分10
16秒前
16秒前
壮观的谷冬完成签到,获得积分10
16秒前
NexusExplorer应助妮妮采纳,获得10
17秒前
ltf完成签到,获得积分10
17秒前
ma完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642