Feasibility of Machine Learned Intracardiac Electrograms to Predict Postinfarction Ventricular Scar Topography

医学 心内注射 心脏病学 内科学 室性心动过速
作者
Kasun De Silva,Timothy Campbell,Richard G. Bennett,Samual Turnbull,Ashwin Bhaskaran,Robert D. Anderson,Christopher J. Davey,Alexandra K. O’Donohue,Aaron Schindeler,Dinesh Selvakumar,Yasuhito Kotake,Chi-jen Hsu,James J.H. Chong,Eddy Kizana,Saurabh Kumar
出处
期刊:Circulation-arrhythmia and Electrophysiology [Lippincott Williams & Wilkins]
卷期号:18 (7)
标识
DOI:10.1161/circep.124.013611
摘要

Accurate delineation of scar patterns is valuable for guiding catheter ablation of ventricular tachycardia. We hypothesized that scar and its pattern of distribution can be determined from intracardiac electrograms using computational signal processing and that further improvements in classification can be achieved with a convolutional neural network. A total of 5 sheep underwent anteroseptal infarction (plus 1 healthy control) with electroanatomic mapping (129±12 days post-infarct). A whole-heart histological model of the postinfarction scar was created and coregistered to ventricular electrograms. Electrograms were matched to scar pattern categories; no scar, at least endocardial scar: at least intramural scar (intramural scar sparing the endocardium), or epicardial-only scar (epicardial scar sparing the endocardium/intramural space). A suite of signal-processing features was extracted from bipolar electrograms. Furthermore, bipolar and unipolar electrograms were used to train a time series convolutional neural network (InceptionTime). A total of 11 551 electrograms were matched to 451 biopsies. Bipolar and unipolar voltage alone were poor classifiers of scar patterns. For each of the scar labels, 20 bipolar electrogram features (predominantly within the frequency domain) yielded an area under the curve of 0.815, 0.810, 0.704, and 0.681 to predict no scar, at least endocardial scar, at least intramural scar, and epicardial-only scar, respectively. Substantial improvement was achieved with a convolutional neural network trained on unipolar electrograms: areas under the curve and accuracy (averaged across wavefronts) were 0.977 and 0.929 for no scar, 0.970 and 0.919 for at least endocardial scar, 0.909 and 0.959 for at least intramural scar and 0.926 and 0.958 for epicardial-only scar. Convolutional neural network-derived analysis of unipolar electrogram data has excellent predictive value for determination of scar patterns. Computational analyses of electrogram data beyond voltage and other time-domain features are necessary to improve the identification of arrhythmogenic sites in the ventricle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marciu33发布了新的文献求助10
1秒前
3秒前
细胞呵呵完成签到,获得积分10
4秒前
科研通AI5应助鱼鱼子采纳,获得10
5秒前
自信的九娘完成签到,获得积分10
6秒前
7秒前
7秒前
bagai完成签到,获得积分10
7秒前
核桃发布了新的文献求助30
9秒前
10秒前
11秒前
鉴衡完成签到,获得积分10
12秒前
12秒前
核桃发布了新的文献求助10
13秒前
我喝白开水完成签到,获得积分10
14秒前
14秒前
鉴衡发布了新的文献求助10
16秒前
善学以致用应助等待雅寒采纳,获得10
16秒前
Ww完成签到,获得积分10
16秒前
科研通AI5应助珂儿采纳,获得10
16秒前
在水一方应助果然采纳,获得10
18秒前
风清扬发布了新的文献求助10
18秒前
Yuanyuan发布了新的文献求助10
18秒前
qcq完成签到 ,获得积分10
19秒前
19秒前
王杰发布了新的文献求助10
21秒前
充电宝应助羽梨采纳,获得10
22秒前
梦丽有人完成签到,获得积分10
22秒前
23秒前
核桃发布了新的文献求助10
23秒前
24秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
27秒前
852应助Yuanyuan采纳,获得10
28秒前
张张完成签到 ,获得积分10
28秒前
弄好不啦发布了新的文献求助10
29秒前
小马甲应助TobyGarfielD采纳,获得10
30秒前
花开富贵完成签到,获得积分10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248424
求助须知:如何正确求助?哪些是违规求助? 3781617
关于积分的说明 11872456
捐赠科研通 3434287
什么是DOI,文献DOI怎么找? 1884846
邀请新用户注册赠送积分活动 936418
科研通“疑难数据库(出版商)”最低求助积分说明 842350