An unsupervised method for extracting coherent spatiotemporal patterns in multi-scale data

比例(比率) 计算机科学 人工智能 模式识别(心理学) 数据挖掘 地理 地图学
作者
Karl Lapo,Peter Yatsyshin,Brigitta Goger,Sara M. Ichinaga,J. Nathan Kutz
标识
DOI:10.5194/egusphere-egu25-9917
摘要

The unsupervised and principled diagnosis of multi-scale data is a fundamental obstacle in earth sciences. Here we explicitly define multi-scale data as being characterized by spatiotemporal processes (i.e. processes acting along time and space simultaneously) with process scales acting across orders of magnitude, non-stationarity, and/or invariances such as translation and rotation. Existing methods, such as traditional analytic approaches, data-driven modeling like Dynamic Mode Decomposition (DMD), and even deep learning, are not well-suited to diagnosing multi-scale data, usually requiring supervised strategies such as human intervention, extensive tuning, or selection of ideal time periods.We present the multi-resolution Coherent Spatio-Temporal Scale Separation (mrCOSTS), a data-driven method capable of overcoming the challenges of multi-scale data. It is a hierarchical variant of Dynamic Mode Decomposition (DMD) that enables the unsupervised extraction of spatiotemporal features in multi-scale data. It operates by decomposing the data into bands of temporal frequencies associated with coherent spatial modes. The method requires no training and functions with little to no hyperparameter tuning by instead taking advantage of the hierarchical nature of multi-scale systems.We demonstrate mrCOSTS on multi-scale data from a range of disciplines and scales: 1) sea surface temperature of the El-Nino Southern Oscillation (ENSO), 2) Antartic sea ice concentration, and 3) directly evaluating a numerical weather model against LIDAR observations of wind speed. In each example we demonstrate how mrCOSTS can be used to gain insights into the underlying dynamics of each system, revealing missing components in the description of each system's variability, diagnosing extreme events, and provide a pathway forward for building better physical representations in models.Using mrCOSTS, we show that ENSO is the result of 6 coherent spatio-temporal bands and use these results to explain the difference in intensity and spatial pattern of extreme 2015-2016 ENSO event relative to other extreme ENSO events. In the second example, we show that the dynamics of Antarctic sea ice concentration were found to have a negligible interannual component until 2012 when a long-term decline initiated and interannual dynamics at a decadal-scale started contributing. The large decline in sea ice concentration between 2014-2017 was almost entirely the result of the new interannual dynamics while the recent record low sea ice concentrations had a strong climate change signal. Finally, we demonstrate how mrCOSTS enables the evaluation of models directly against spatially-explicit observations. We evaluated an eddy-resolving numerical model against LIDAR observations of wind speed. The scale-aware model evaluation allowed us to easily reveal that errors at the largest scales dominated the system despite the agreement of lower order statistical moments. In each case using mrCOSTS we trivially retrieved complex dynamics that were previously difficult to resolve while additionally extracting previously unknown patterns or complexities of systems characterized by multi-scale processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心夏烟发布了新的文献求助10
4秒前
淡定的日记本完成签到,获得积分10
7秒前
怦然心动发布了新的文献求助10
7秒前
9秒前
doctor杨完成签到,获得积分20
12秒前
科研通AI5应助zmx采纳,获得10
12秒前
渊澄发布了新的文献求助10
14秒前
清爽的雨竹完成签到 ,获得积分10
16秒前
20秒前
neinei发布了新的文献求助10
22秒前
23秒前
dennisysz发布了新的文献求助10
24秒前
丘比特应助俭朴的大有采纳,获得10
24秒前
科研通AI5应助ref:rain采纳,获得10
27秒前
sunny发布了新的文献求助10
28秒前
荃芏发布了新的文献求助10
29秒前
小马甲应助自觉半凡采纳,获得10
30秒前
虚心夏烟完成签到,获得积分10
32秒前
所所应助科研通管家采纳,获得10
36秒前
Jasper应助科研通管家采纳,获得10
36秒前
大个应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
bkagyin应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
37秒前
CodeCraft应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
赵亮完成签到,获得积分10
40秒前
南雨完成签到 ,获得积分10
41秒前
tcmlida完成签到,获得积分10
42秒前
大个应助疯狂的宛凝采纳,获得10
43秒前
赵亮发布了新的文献求助10
45秒前
无花果应助妃妃飞采纳,获得10
46秒前
48秒前
无花果应助SCI采纳,获得10
50秒前
ref:rain发布了新的文献求助10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133