HWA-ResMamba: automatic segmentation of coronary arteries based on residual Mamba with high-order wavelet-enhanced convolution and attention feature aggregation

分割 计算机科学 特征(语言学) 编码器 人工智能 卷积(计算机科学) 小波 模式识别(心理学) 冠状动脉 计算机视觉 动脉 医学 人工神经网络 哲学 语言学 外科 操作系统
作者
Jinzhong Yang,Hong Peng,Lu Wang,Lisheng Xu,Dongming Chen,Chengbao Peng,Ping An,Benqiang Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adc0dd
摘要

Abstract Automatic segmentation of coronary arteries is a crucial prerequisite in assisting in the diagnosis of coronary artery disease. However, due to the fuzzy boundaries, small-slender branches, and significant individual variations, automatic segmentation of coronary arteries is extremely challenging. To address these challenges, this study proposes a residual Mamba with high-order wavelet-enhanced convolution and attention feature aggregation (HWA-ResMamba). The network consists of three core modules: high-order wavelet-enhanced convolution block (HWCB), residual Mamba (ResMamba) module, and attention feature aggregation (AFA) module. Firstly, the HWCB captures low-frequency information of the image in the shallow layers of the network, allowing for detailed exploration of subtle changes in the boundaries of coronary arteries. Secondly, the ResMamba module establishes long-range dependencies between features in the deep layers of the encoder and at the beginning of the decoder, improving the continuity of the segmentation process. Finally, the
AFA module in the decoder reduces semantic differences between the encoder and decoder, which can capture small-slender coronary artery branches and further improve segmentation accuracy. Experiments on two coronary artery segmentation datasets have shown that the
HWA-ResMamba outperforms other state-of-the-art methods in terms of performance and generalization. Specifically, in the self-built dataset, HWA-ResMamba obtained Dice of
0.8857 and Hausdorff Distance (HD) of 1.9028, outperforming nnUnet by 0.0521, and 0.5489, respectively. HWA-ResMamba obtained Dice of 0.8371, and HD of 3.7205 in the public dataset, outperforming nnUnet by 0.0255, and 2.7533, respectively. These results demonstrate that the proposed model performs well in segmenting coronary arteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零知识完成签到 ,获得积分10
刚刚
2秒前
12wsesd完成签到 ,获得积分10
2秒前
6秒前
温超完成签到,获得积分10
7秒前
Nelson完成签到,获得积分10
7秒前
可爱山彤发布了新的文献求助10
7秒前
8秒前
Owen应助爱听歌契采纳,获得10
9秒前
pengGuo完成签到,获得积分20
9秒前
10秒前
羊青丝发布了新的文献求助10
11秒前
田様应助科研通管家采纳,获得10
11秒前
Xiaoxiao应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
小豆包完成签到,获得积分20
14秒前
15秒前
16秒前
小鱼完成签到 ,获得积分10
16秒前
大开口完成签到,获得积分10
16秒前
无限的隶发布了新的文献求助10
17秒前
阔达水之发布了新的文献求助10
17秒前
不知道叫啥完成签到,获得积分20
17秒前
涵泽发布了新的文献求助10
19秒前
张超发布了新的文献求助10
19秒前
在水一方应助zhouyan采纳,获得10
21秒前
Zion完成签到,获得积分0
22秒前
孤独的巨人完成签到,获得积分10
23秒前
眼睛大的冰岚完成签到,获得积分10
24秒前
赫连砖家完成签到,获得积分10
25秒前
25秒前
pluto应助舒适的猫咪采纳,获得20
28秒前
桐桐应助无限的隶采纳,获得10
29秒前
热心市民应助不知道叫啥采纳,获得10
30秒前
grzzz完成签到,获得积分10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451