Applications of deep neural networks in exploration seismology: A technical survey

数据处理 地质学 人工神经网络 地震学 可解释性 计算机科学 数据采集 人工智能 操作系统
作者
S. Mostafa Mousavi,Gregory C. Beroza,Tapan Mukerji,Majid Rasht‐Behesht
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA95-WA115 被引量:33
标识
DOI:10.1190/geo2023-0063.1
摘要

Exploration seismology uses reflected and refracted seismic waves, emitted from a controlled (active) source into the ground, and recorded by an array of seismic sensors (receivers) to image the subsurface geologic structures. These seismic images are the main resources for energy and resource exploration and scientific investigation of the crust and upper mantle. We survey recent advances in applications of machine-learning methods, more specifically deep neural networks (DNNs), in exploration seismology. We provide a technically oriented review of DNN applications for seismic data acquisition; data preprocessing tasks such as interpolation/extrapolation, denoising, first-break picking, velocity picking, and seismic migration; data processing tasks such as geologic and structural interpretations; and data modeling tasks such as the inference of subsurface structures and lithologic and petrophysical properties. DNNs have entered almost every sector of exploration seismology. They have outperformed many traditional algorithms for the automation of seismic data acquisition, data preprocessing, data processing, interpretations, and data modeling tasks. However, despite the impressive performances of DNN-based approaches, the out-of-distribution generalization and interpretability of these models remain challenging. To overcome these challenges, incorporating domain knowledge into the DNNs is a promising path and a focus of current deep-learning research in seismology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缪尔岚完成签到,获得积分10
2秒前
CipherSage应助杨怡诗采纳,获得10
2秒前
3秒前
An发布了新的文献求助10
3秒前
4秒前
daluoboa发布了新的文献求助10
5秒前
爆米花应助觅海采纳,获得10
5秒前
7秒前
blue完成签到,获得积分10
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
916应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
大力依珊发布了新的文献求助10
8秒前
916应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得20
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
一一发布了新的文献求助10
10秒前
11秒前
11秒前
fanmo完成签到 ,获得积分0
13秒前
清脆凡阳完成签到 ,获得积分10
14秒前
大鲨鱼完成签到 ,获得积分10
14秒前
14秒前
17秒前
科研通AI5应助Michael采纳,获得10
17秒前
daluoboa完成签到,获得积分10
18秒前
星辰大海应助天行马采纳,获得10
18秒前
卡卡西应助启原采纳,获得50
19秒前
luna完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803576
求助须知:如何正确求助?哪些是违规求助? 3348491
关于积分的说明 10338876
捐赠科研通 3064615
什么是DOI,文献DOI怎么找? 1682639
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038