Simple linear iterative clustering and ConvNeXt for mapping vectorize tree species

计算机科学 聚类分析 矢量化(数学) 树(集合论) 边界(拓扑) 天蓬 航程(航空) 遥感 模式识别(心理学) 人工智能 数学 地理 考古 并行计算 材料科学 复合材料 数学分析
作者
Ni Wang,Tao Pu,Taisheng Chen
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:17 (03) 被引量:1
标识
DOI:10.1117/1.jrs.17.038502
摘要

We propose a pioneering approach for gathering data on the forest canopy, one that merges two cutting-edge technologies: ConvNext tiny and simple linear iterative clustering (SLIC) (ConvNeXt and SLIC vectorize for tree species mapping, CSVTSM). By leveraging the clustering label generated by SLIC, CSVTSM obtains the vectorized result of land cover and allows us to obtain the location and distribution range information about the individual canopy. Moreover, CSVTSM employed ConvNeXt tiny, an advanced model, to identify vector objects and produce vector tree species maps across the experimental area to obtain the area of various tree species. To evaluate the accuracy of our methodology, we compared the canopy boundary of the original image to the four experimental areas that were vectorized by CSVTSM. Our model’s efficacy was assessed by calculating the overall accuracy and Kappa coefficient on the validation set. The effectiveness of the proposed method was qualitatively evaluated by calculating the difference between the tree species area extracted by CSVTSM and manual extraction. The results indicate that, when considering the same canopy size, the vectorization approach based on the SLIC-based clustering label generates vector boundaries that are more closely aligned with the distribution of actual canopy boundaries in the experimental area. Furthermore, when used in conjunction with the SLIC vectorization approach, the ConvNeXt model can produce an even more precise vector map of tree species and more accurate tree species area information is obtained (only a 0.26 ha difference from manual extraction). These findings demonstrate that CSVTSM can be used to quantitatively acquire a wealth of information on individual tree positions, crown distribution ranges, and planting areas from high-resolution RGB photos captured by low-consumption unmanned aerial vehicle platforms. The implications of these results are wide-ranging, with local managers expressing keen interest in our findings as they offer trustworthy support for statistical application fields, such as gathering area ecological information, locating tree species resources, and disseminating spatial information about forests..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
风中的三德完成签到,获得积分20
4秒前
yuan完成签到,获得积分10
4秒前
4秒前
标致秋尽完成签到 ,获得积分10
5秒前
5秒前
小小怪发布了新的文献求助10
6秒前
八月中稿完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
李多卡因完成签到,获得积分10
10秒前
阿鱼鱼鱼完成签到,获得积分10
10秒前
10秒前
11秒前
领导范儿应助雾散采纳,获得10
12秒前
执着的冬瓜完成签到 ,获得积分10
12秒前
CC发布了新的文献求助10
13秒前
欢呼沅发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
隐形曼青应助CC采纳,获得10
17秒前
17秒前
18秒前
18秒前
RuiLi完成签到,获得积分10
18秒前
19秒前
遥想得山田完成签到,获得积分10
19秒前
20秒前
21秒前
小小怪完成签到,获得积分10
21秒前
CC完成签到,获得积分10
22秒前
lily发布了新的文献求助10
22秒前
曲淳发布了新的文献求助10
23秒前
EurekaOvo发布了新的文献求助10
23秒前
无花果应助xqf123采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4721283
求助须知:如何正确求助?哪些是违规求助? 4081224
关于积分的说明 12621031
捐赠科研通 3786469
什么是DOI,文献DOI怎么找? 2091212
邀请新用户注册赠送积分活动 1117322
科研通“疑难数据库(出版商)”最低求助积分说明 994097