Graph Enhanced Hierarchical Reinforcement Learning for Goal-oriented Learning Path Recommendation

强化学习 计算机科学 目标导向 马尔可夫决策过程 图形 路径(计算) 人工智能 机器学习 任务(项目管理) 目标设定 马尔可夫过程 理论计算机科学 经济 心理学 社会心理学 统计 数学 管理 程序设计语言
作者
Qingyao Li,Wei Xia,Liang Yin,Jian Shen,Renting Rui,Weinan Zhang,Xianyu Chen,Ruiming Tang,Yong Yu
标识
DOI:10.1145/3583780.3614897
摘要

Goal-oriented Learning path recommendation aims to recommend learning items (concepts or exercises) step-by-step to a learner to promote the mastery level of her specific learning goals. By formulating this task as a Markov decision process, reinforcement learning (RL) methods have demonstrated great power. Although extensive research efforts have been made, previous methods still fail to recommend effective goal-oriented paths due to the under-utilizing of goals. Specifically, it is mainly reflected in two aspects: (1)The lack of goal planning. When learners have multiple goals with different difficulties, the previous methods can't fully utilize the difficulties and dependencies between goal learning items to plan the sequence of achieving these goals, making the path chaotic and inefficient; (2)The lack of efficiency in goal achieving. When pursuing a single goal, the path may contain learning items unrelated to the goal, which makes realizing a certain goal inefficient. To address these challenges, we present a novel Graph Enhanced Hierarchical Reinforcement Learning (GEHRL) framework for goal-oriented learning path recommendation. The framework divides learning path recommendation into two parts: sub-goal selection(planning) and sub-goal achieving(learning item recommendation). Specifically, we employ a high-level agent as a sub-goal selector to select sub-goals for the low-level agent to achieve. The low-level agent in the framework is to recommend learning items to the learner. To make the path only contain goal-related learning items to improve the efficiency of achieving the goal, we develop a graph-based candidate selector to constrain the action space of the low-level agent based on the sub-goal and knowledge graph. We also develop test-based internal reward for low-level training so that the sparsity problem of external reward can be alleviated. Extensive experiments on three different simulators demonstrate our framework achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于彦祖应助云端采纳,获得10
刚刚
刚刚
忧郁山槐完成签到 ,获得积分10
1秒前
共享精神应助duxixixi采纳,获得10
1秒前
2秒前
嘤嘤嘤发布了新的文献求助10
2秒前
科研通AI5应助fighting采纳,获得30
2秒前
peng完成签到,获得积分10
2秒前
丑麒完成签到,获得积分10
2秒前
丁元英完成签到,获得积分10
4秒前
甜甜穆完成签到,获得积分10
4秒前
4秒前
4秒前
FashionBoy应助文静的眼睛采纳,获得10
4秒前
ll发布了新的文献求助10
4秒前
安好完成签到,获得积分10
4秒前
5秒前
zxm完成签到,获得积分10
5秒前
hedy完成签到,获得积分10
5秒前
小熊饼干完成签到,获得积分10
6秒前
6秒前
Jasper应助小亮哈哈采纳,获得10
7秒前
yang完成签到 ,获得积分10
7秒前
晓兴兴完成签到,获得积分10
7秒前
花粉过敏发布了新的文献求助10
8秒前
c123完成签到 ,获得积分10
9秒前
9秒前
香蕉觅云应助方寸采纳,获得10
9秒前
可爱的函函应助ll采纳,获得10
9秒前
guo发布了新的文献求助10
10秒前
10秒前
庄小因完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
伈X完成签到,获得积分10
12秒前
一木发布了新的文献求助10
13秒前
13秒前
Wind发布了新的文献求助20
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793002
求助须知:如何正确求助?哪些是违规求助? 3337779
关于积分的说明 10286682
捐赠科研通 3054320
什么是DOI,文献DOI怎么找? 1675933
邀请新用户注册赠送积分活动 803951
科研通“疑难数据库(出版商)”最低求助积分说明 761598