Graph Enhanced Hierarchical Reinforcement Learning for Goal-oriented Learning Path Recommendation

强化学习 计算机科学 目标导向 马尔可夫决策过程 图形 路径(计算) 人工智能 机器学习 任务(项目管理) 目标设定 马尔可夫过程 理论计算机科学 统计 经济 管理 程序设计语言 社会心理学 数学 心理学
作者
Qingyao Li,Wei Xia,Liang Yin,Jian Shen,Renting Rui,Weinan Zhang,Xianyu Chen,Ruiming Tang,Yong Yu
标识
DOI:10.1145/3583780.3614897
摘要

Goal-oriented Learning path recommendation aims to recommend learning items (concepts or exercises) step-by-step to a learner to promote the mastery level of her specific learning goals. By formulating this task as a Markov decision process, reinforcement learning (RL) methods have demonstrated great power. Although extensive research efforts have been made, previous methods still fail to recommend effective goal-oriented paths due to the under-utilizing of goals. Specifically, it is mainly reflected in two aspects: (1)The lack of goal planning. When learners have multiple goals with different difficulties, the previous methods can't fully utilize the difficulties and dependencies between goal learning items to plan the sequence of achieving these goals, making the path chaotic and inefficient; (2)The lack of efficiency in goal achieving. When pursuing a single goal, the path may contain learning items unrelated to the goal, which makes realizing a certain goal inefficient. To address these challenges, we present a novel Graph Enhanced Hierarchical Reinforcement Learning (GEHRL) framework for goal-oriented learning path recommendation. The framework divides learning path recommendation into two parts: sub-goal selection(planning) and sub-goal achieving(learning item recommendation). Specifically, we employ a high-level agent as a sub-goal selector to select sub-goals for the low-level agent to achieve. The low-level agent in the framework is to recommend learning items to the learner. To make the path only contain goal-related learning items to improve the efficiency of achieving the goal, we develop a graph-based candidate selector to constrain the action space of the low-level agent based on the sub-goal and knowledge graph. We also develop test-based internal reward for low-level training so that the sparsity problem of external reward can be alleviated. Extensive experiments on three different simulators demonstrate our framework achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助梓榆采纳,获得10
刚刚
刚刚
LCQ完成签到,获得积分10
1秒前
1秒前
小贱牛完成签到,获得积分10
3秒前
卓Celina完成签到,获得积分10
3秒前
小二郎应助珍珍采纳,获得10
4秒前
八九完成签到,获得积分20
4秒前
4秒前
所所应助小丫采纳,获得10
4秒前
SCI完成签到,获得积分10
5秒前
月月发布了新的文献求助10
5秒前
5秒前
Nero完成签到,获得积分10
5秒前
自由的代容应助wxz1998采纳,获得50
6秒前
6秒前
bmhs2017应助温暖的千愁采纳,获得10
7秒前
奥利奥发布了新的文献求助10
8秒前
8秒前
情怀应助纸上浅采纳,获得10
8秒前
wangqinxin完成签到,获得积分20
9秒前
11秒前
11秒前
晚风发布了新的文献求助10
11秒前
12秒前
JM发布了新的文献求助10
12秒前
Jasper应助sunyanghu369采纳,获得150
12秒前
cc发布了新的文献求助10
12秒前
TZ完成签到,获得积分10
14秒前
ZM完成签到,获得积分10
14秒前
15秒前
科研通AI6应助庾烙采纳,获得10
15秒前
15秒前
15秒前
15秒前
jjw123发布了新的文献求助10
15秒前
小贱牛发布了新的文献求助10
16秒前
zzzyyyppp发布了新的文献求助10
16秒前
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384576
求助须知:如何正确求助?哪些是违规求助? 4507385
关于积分的说明 14027832
捐赠科研通 4417056
什么是DOI,文献DOI怎么找? 2426235
邀请新用户注册赠送积分活动 1419055
关于科研通互助平台的介绍 1397371