CLDG: Contrastive Learning on Dynamic Graphs

计算机科学 图形 理论计算机科学 统计的 人工智能 特征学习 机器学习 数学 统计
作者
Yiming Xu,Bin Shi,Teng Ma,Bo Dong,Haoyi Zhou,Qinghua Zheng
标识
DOI:10.1109/icde55515.2023.00059
摘要

The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph contrastive learning. It constructs self-supervised signals by maximizing the mutual information between the statistic graph's augmentation views. However, the semantics and labels may change within the augmentation process, causing a significant performance drop in downstream tasks. This drawback becomes greatly magnified on dynamic graphs. To address this problem, we designed a simple yet effective framework named CLDG. Firstly, we elaborate that dynamic graphs have temporal translation invariance at different levels. Then, we proposed a sampling layer to extract the temporally-persistent signals. It will encourage the node to maintain consistent local and global representations, i.e., temporal translation invariance under the timespan views. The extensive experiments demonstrate the effectiveness and efficiency of the method on seven datasets by outperforming eight unsupervised state-of-the-art baselines and showing competitiveness against four semi-supervised methods. Compared with the existing dynamic graph method, the number of model parameters and training time is reduced by an average of 2,001.86 times and 130.31 times on seven datasets, respectively. The code and data are available at: https://github.com/yimingxu24/CLDG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lxz完成签到 ,获得积分10
刚刚
1秒前
芒果味猕猴桃完成签到,获得积分10
1秒前
3秒前
深情飞丹完成签到 ,获得积分10
4秒前
科研通AI5应助耍酷的曼青采纳,获得10
5秒前
7秒前
耀阳完成签到 ,获得积分10
7秒前
机灵柚子应助shangx采纳,获得10
7秒前
111完成签到 ,获得积分10
8秒前
8秒前
从容问薇完成签到,获得积分10
8秒前
博修发布了新的文献求助10
9秒前
11秒前
ttttaf完成签到,获得积分10
11秒前
科研通AI5应助优美的冥幽采纳,获得10
12秒前
13秒前
15秒前
16秒前
科研通AI5应助博修采纳,获得30
17秒前
树上香蕉果完成签到,获得积分10
17秒前
哭泣以筠发布了新的文献求助10
17秒前
111发布了新的文献求助10
18秒前
liu发布了新的文献求助10
19秒前
ffff发布了新的文献求助10
20秒前
ccx发布了新的文献求助10
22秒前
阿白白完成签到,获得积分10
24秒前
25秒前
25秒前
Lucas应助猪猪hero采纳,获得10
25秒前
28秒前
28秒前
hellocc发布了新的文献求助10
28秒前
YCW发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
daiV发布了新的文献求助10
32秒前
ln发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397