已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Representation of Imprecision in Deep Neural Networks for Image Classification

人工智能 模式识别(心理学) 人工神经网络 集合(抽象数据类型) 计算机科学 图像(数学) 透视图(图形) 代表(政治) 特征(语言学) 机器学习 深信不疑网络 深度学习 上下文图像分类 过程(计算) 语言学 哲学 政治 政治学 法学 程序设计语言 操作系统
作者
Zuowei Zhang,Zhunga Liu,Liangbo Ning,Arnaud Martin,Jiexuan Xiong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2023.3329712
摘要

Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
style完成签到,获得积分10
1秒前
3秒前
英姑应助Vicktor2021采纳,获得10
4秒前
12完成签到 ,获得积分10
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得30
6秒前
非而者厚应助科研通管家采纳,获得30
7秒前
非而者厚应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
科研小牛应助勤劳糜采纳,获得10
7秒前
hins完成签到 ,获得积分10
10秒前
小航发布了新的文献求助10
11秒前
pigff发布了新的文献求助10
12秒前
纯真若菱发布了新的文献求助10
13秒前
小小斌完成签到,获得积分10
16秒前
nini完成签到,获得积分10
16秒前
Tae_Hanazono发布了新的文献求助30
17秒前
谦让的雅青完成签到 ,获得积分10
19秒前
李家静完成签到 ,获得积分10
19秒前
20秒前
20秒前
云是完成签到 ,获得积分10
21秒前
yuki完成签到,获得积分20
22秒前
22秒前
科研通AI2S应助Azusa采纳,获得10
22秒前
23秒前
23秒前
cheng完成签到 ,获得积分10
23秒前
26秒前
26秒前
Ricardo发布了新的文献求助10
26秒前
27秒前
29秒前
木木发布了新的文献求助10
29秒前
Stefani发布了新的文献求助10
30秒前
笨笨的荧荧完成签到 ,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788098
求助须知:如何正确求助?哪些是违规求助? 3333579
关于积分的说明 10262519
捐赠科研通 3049385
什么是DOI,文献DOI怎么找? 1673537
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477