已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of the prostate cancer and its metastases in the 68-Ga-PSMA PET/CT images: deep learning method vs. conventional PET/CT processing

衰减校正 核医学 前列腺癌 医学 PET-CT 深度学习 均方误差 病变 图像质量 人工智能 放射科 癌症 正电子发射断层摄影术 数学 计算机科学 病理 统计 内科学 图像(数学)
作者
Masoumeh Dorri Giv,Hosein Arabi,Raheleh Tabari Jouybari,Leila Alipour Firouzabad,Hossein Akbari‐Lalimi,Atena Aghaei,Amir Hosein Dabbagh,Zahra Bakhshi Golestani,Vahid Reza Dabbagh Kakhki
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3581229/v1
摘要

Abstract Objective: This study aims to demonstrate the feasibility and benefits of using a deep learning-based approach for attenuation correction in 68-Ga-PSMA whole-body PET scans. Materials & Methods: A dataset comprising 700 patients (a mean age: 67.6±5.9 years old, range: 45-85 years) with prostate cancer who underwent 68-Ga-PSMA PET/CT examinations was collected. A deep learning model was trained on 700 whole-body68-Ga-PSMA clinical images to perform attenuation correction (AC) in the image domain. To assess the quantitative accuracy of the developed deep learning model, clinical data from 92 patients were used as a reference for CT-based PET AC (PET-CTAC). Standard quantification metrics, including mean error (ME), mean absolute error (MAE), and root mean square error (RMSE) were calculated in terms of standard uptake value (SUV) to gauge the accuracy of the model. For clinical evaluation, three specialists conducted a blinded assessment of synthesized PET images’ quality in terms of lesion detectability across 50 clinical subjects, comparing them with PET-CTAC images. Results: Quantitative analysis of the deep learning AC (DLAC) model revealed ME, MAE, and RMSE values of -0.007±0.032, 0.08±0.033, and 0.252±125 (SUV), respectively. Additionally, regarding lesion detection analysis, the deep learning model demonstrated superior image quality for 16 subjects out of 50 compared to the PET-CT AC images. In 56% of cases, PET-DLAC and PET-CTAC images exhibited closely comparable image quality and lesion delectability. Conclusion: This study emphasizes the significant improvement in image quality and lesion detection capabilities achieved through the integration of deep learning-based attenuation correction in 68-Ga-PSMA PET imaging. This innovation not only provides a compelling solution to the challenges posed by bladder radioactivity but also a promising way to minimize patient radiation exposure through the coordinated integration of low-dose CT and deep learning-based AC, while simultaneously increasing the image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
malou完成签到,获得积分10
1秒前
传奇3应助高高问夏采纳,获得10
2秒前
榴莲姑娘发布了新的文献求助10
3秒前
4秒前
JMchiefEditor发布了新的文献求助30
5秒前
5秒前
5秒前
7秒前
7秒前
菜头完成签到,获得积分10
8秒前
iiiau发布了新的文献求助10
8秒前
七七应助wise111采纳,获得10
9秒前
puhong zhang完成签到,获得积分10
9秒前
12秒前
JMchiefEditor完成签到,获得积分10
13秒前
平淡的萤完成签到,获得积分10
15秒前
快来拾糖完成签到 ,获得积分10
16秒前
天天快乐应助优美飞薇采纳,获得10
17秒前
xuyuhao驳回了SYLH应助
19秒前
19秒前
19秒前
hu关注了科研通微信公众号
21秒前
一骑绝尘完成签到,获得积分10
21秒前
卖粥的果完成签到 ,获得积分10
23秒前
无花果应助杰西采纳,获得10
24秒前
小蘑菇应助iiiau采纳,获得10
24秒前
25秒前
polite发布了新的文献求助10
25秒前
26秒前
你是我的唯一完成签到 ,获得积分10
27秒前
故意的怜晴完成签到 ,获得积分10
28秒前
ahxb完成签到,获得积分10
30秒前
HLQF完成签到,获得积分10
31秒前
Byron完成签到,获得积分10
31秒前
思源应助wise111采纳,获得10
32秒前
土豆土豆我是番茄酱完成签到,获得积分10
36秒前
星辰大海应助呆萌的天宇采纳,获得10
37秒前
互助棍哥完成签到,获得积分10
38秒前
41秒前
42秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085262
求助须知:如何正确求助?哪些是违规求助? 3624328
关于积分的说明 11496529
捐赠科研通 3338553
什么是DOI,文献DOI怎么找? 1835252
邀请新用户注册赠送积分活动 903779
科研通“疑难数据库(出版商)”最低求助积分说明 821956