清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evaluation of the prostate cancer and its metastases in the 68-Ga-PSMA PET/CT images: deep learning method vs. conventional PET/CT processing

衰减校正 核医学 前列腺癌 医学 PET-CT 深度学习 均方误差 病变 图像质量 人工智能 放射科 癌症 正电子发射断层摄影术 数学 计算机科学 病理 统计 内科学 图像(数学)
作者
Masoumeh Dorri Giv,Hosein Arabi,Raheleh Tabari Jouybari,Leila Alipour Firouzabad,Hossein Akbari‐Lalimi,Atena Aghaei,Amir Hosein Dabbagh,Zahra Bakhshi Golestani,Vahid Reza Dabbagh Kakhki
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3581229/v1
摘要

Abstract Objective: This study aims to demonstrate the feasibility and benefits of using a deep learning-based approach for attenuation correction in 68-Ga-PSMA whole-body PET scans. Materials & Methods: A dataset comprising 700 patients (a mean age: 67.6±5.9 years old, range: 45-85 years) with prostate cancer who underwent 68-Ga-PSMA PET/CT examinations was collected. A deep learning model was trained on 700 whole-body68-Ga-PSMA clinical images to perform attenuation correction (AC) in the image domain. To assess the quantitative accuracy of the developed deep learning model, clinical data from 92 patients were used as a reference for CT-based PET AC (PET-CTAC). Standard quantification metrics, including mean error (ME), mean absolute error (MAE), and root mean square error (RMSE) were calculated in terms of standard uptake value (SUV) to gauge the accuracy of the model. For clinical evaluation, three specialists conducted a blinded assessment of synthesized PET images’ quality in terms of lesion detectability across 50 clinical subjects, comparing them with PET-CTAC images. Results: Quantitative analysis of the deep learning AC (DLAC) model revealed ME, MAE, and RMSE values of -0.007±0.032, 0.08±0.033, and 0.252±125 (SUV), respectively. Additionally, regarding lesion detection analysis, the deep learning model demonstrated superior image quality for 16 subjects out of 50 compared to the PET-CT AC images. In 56% of cases, PET-DLAC and PET-CTAC images exhibited closely comparable image quality and lesion delectability. Conclusion: This study emphasizes the significant improvement in image quality and lesion detection capabilities achieved through the integration of deep learning-based attenuation correction in 68-Ga-PSMA PET imaging. This innovation not only provides a compelling solution to the challenges posed by bladder radioactivity but also a promising way to minimize patient radiation exposure through the coordinated integration of low-dose CT and deep learning-based AC, while simultaneously increasing the image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助火焰向上采纳,获得10
19秒前
jagger完成签到,获得积分10
19秒前
152455完成签到 ,获得积分10
23秒前
30秒前
火焰向上发布了新的文献求助10
35秒前
火焰向上完成签到,获得积分10
43秒前
52秒前
foyefeng完成签到 ,获得积分0
1分钟前
gincle完成签到 ,获得积分10
1分钟前
sci完成签到 ,获得积分10
1分钟前
charih完成签到 ,获得积分10
1分钟前
哈拉斯完成签到,获得积分10
1分钟前
1分钟前
wishe完成签到,获得积分10
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
喵星人发布了新的文献求助10
1分钟前
张先生完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
福祸相依完成签到,获得积分10
2分钟前
喵星人完成签到,获得积分20
2分钟前
好好好完成签到 ,获得积分10
3分钟前
l老王完成签到 ,获得积分10
3分钟前
huanghe完成签到,获得积分10
3分钟前
3分钟前
3分钟前
cryscilla发布了新的文献求助10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
Ava应助四月采纳,获得10
3分钟前
volvoamg发布了新的文献求助10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
cryscilla完成签到,获得积分10
4分钟前
川藏客完成签到 ,获得积分10
4分钟前
雪流星完成签到 ,获得积分10
4分钟前
4分钟前
ivyjianjie完成签到 ,获得积分10
4分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
拼搏小丸子完成签到 ,获得积分10
4分钟前
volvoamg发布了新的文献求助10
4分钟前
future完成签到 ,获得积分10
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360260
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076