亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Based Hardness Prediction of High-Entropy Alloys for Laser Additive Manufacturing

人工神经网络 高熵合金 杠杆(统计) 计算机科学 熵(时间箭头) 材料科学 人工智能 机器学习 合金 冶金 量子力学 物理
作者
Wenhan Zhu,Wenyi Huo,Shiqi Wang,Ł. Kurpaska,Feng Fang,Stefanos Papanikolaou,Hyoung Seop Kim,Jianqing Jiang
出处
期刊:JOM [Springer Science+Business Media]
卷期号:75 (12): 5537-5548 被引量:15
标识
DOI:10.1007/s11837-023-06174-x
摘要

Abstract High-entropy alloys (HEAs) have attracted much attention for laser additive manufacturing, due to their superb mechanical properties. However, their industry application is still hindered by the high entry barriers of design for additive manufacturing and the limited performance library of HEAs. In most machine learning methods used to predict the properties of HEAs, their processing paths are not clearly distinguished. To overcome these issues, in this work, a novel deep neural network architecture is proposed that includes HEA manufacturing routes as input features. The manufacturing routes, i.e., as-cast and laser additive manufactured samples, are transformed into the One-Hot encoder. This makes the samples in the dataset provide better directivity and reduces the prediction error of the model. Data augmentation with conditional generative adversarial networks is employed to obtain some data samples with a distribution similar to that of the original data. These additional added data samples overcome the shortcoming of the limited performance library of HEAs. The results show that the mean absolute error value of the prediction is 44.6, which is about 27% lower than that using traditional neural networks in this work. This delivers a new path to discover chemical compositions suitable for laser additive manufactured HEAs, which is of universal relevance for assisting specific additive manufacturing processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
20秒前
思源应助ly采纳,获得10
23秒前
24秒前
木兮发布了新的文献求助10
26秒前
34秒前
41秒前
量子星尘发布了新的文献求助10
47秒前
ly发布了新的文献求助10
48秒前
51秒前
54秒前
56秒前
Susan发布了新的文献求助10
59秒前
LHL发布了新的文献求助10
59秒前
AsherWood完成签到 ,获得积分10
1分钟前
读研霹雳完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
赘婿应助海藏进星辰采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
Sckke发布了新的文献求助10
2分钟前
2分钟前
华仔应助Sckke采纳,获得10
2分钟前
婼汐发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
吾日三省吾身完成签到 ,获得积分10
2分钟前
可爱的函函应助gzupppp采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Pool完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885786
求助须知:如何正确求助?哪些是违规求助? 3427865
关于积分的说明 10757104
捐赠科研通 3152723
什么是DOI,文献DOI怎么找? 1740596
邀请新用户注册赠送积分活动 840305
科研通“疑难数据库(出版商)”最低求助积分说明 785302